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Abstract 
 

In this article, we focus on the need for “human  computing”  in data-rich ecosystems, notably 

as a consequence of data variety and typically for name disambiguation, and explore ways to 

manage it via online platforms for paid crowdsourcing. Based on several studies of Amazon 

Mechanical Turk, a well-established platform for matching data treatment tasks to human 

beings willing to carry them out, we illustrate the difficulties involved as requesters compete 

for the attention of workers. We suggest that researchers should shift from a technical analysis 

and tentative resolution of human computing perils and pitfalls, towards a more economic and 

managerial analysis of human computing platforms understood as online labor markets, 

notably in their multi-sided nature and with respect to how they manage the attention of 

online workers.    
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1. Introduction 
 

Big data, taken as shorthand for data-intensive activities in digital ecosystems, has been 

heralded as a great opportunity for management (McAfee and Brynjolfsson, 2012) and has 

already had a big impact in many economic sectors. However, what is new about big data is 

not only its volume, and the speed at which it is generated (its velocity), but also its variety 

(Chen et al., 2013), for which the different spellings of the same name is a good example. 

Quite paradoxically then, with regards to dealing with this variety of the data in data-rich 

ecosystems, humans, a.k.a. the general public, can be enlisted to help with data processing in 

big data environments (Brynjolfsson et al. 2014), because dealing with such variety and 

heterogeneity is still particularly hard for computers, but much less so for human beings. One 

would thus like to embed the “manual” approach in the “computational” method, leaving only 

the part where humans perform better to humans (Lewis et al., 2013). This mixing of 

computer and human efforts is sometimes referred   to   as   “heteromation”   (Ekbia & Nardi, 

2014) and more general to “human  computing” (Zittrain, 2008). Irrespective of naming, this 

division of labor between humans and computers ultimately turns into a work of co-creation 

between the data analyst and the crowd he or she employs: a difficult task (Striukova & 

Rayna 2015). It is therefore of utmost importance to understand how firms can engage with 

crowd workers (Raasch 2011; Lauritzen et al. 2013). Furthermore, human computing is 

generally established via platforms acting as intermediaries, and whose role in data-rich 

ecosystems is thus crucial (Rong et al. 2013). 

In order to analyze the role of human computing platforms, we focus in this article on the 

most widely used platform for paid crowdsourcing, Amazon Mechanical Turk (AMT). We 

first describe the role that a platform like AMT can play with respect to name disambiguation, 

a  process  typically  called  the  “name  game”  in  scientometrics,  and  the  many  known  pitfalls  of  

using AMT in this respect. We further present a protocol used otherwise with this objective, 

and stress specifically the conclusions and difficulties that have been encountered in doing so, 

that we suggest stem from a partial misunderstanding and naïveté of the existing literature 

with respect to what online human computing platforms actually entail. Namely, 

understanding and finding ways to circumvent the many pitfalls associated with AMT should 

not  blur  the  fact  that,  in  essence,  AMT  is  a  platform  via  which  “requesters”  have  access  to  an  

online labor market, which we suggest should be analyzed as such. In this respect, we stress 

two  particularly   important   aspects   of   the   “human   computing”   labor  market   associated  with  

AMT: first, using empirical data from several months of activity on AMT, that AMT is a 2-
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sided platform that has probably self-selected a category of workers interested mostly in 

repetitive simple and easy tasks, with a surprising low sensitivity to price signals; and second, 

using a tool developed otherwise to simulate AMT, that we ignore much of the basic 

determinants  of  workers’  allocation  of  attention  on  AMT.  We  conclude  that,  much  more  than  

it is often the case, further investigations are needed from economists and management 

scientists to clarify the role and the functioning of human computing labor markets. 

2. Amazon Mechanical Turk as a human computing platform 
 

a. Using AMT for name disambiguation 

We first report on our past experiments with AMT, used as a human computing platform to 

address the variety of name spellings. AMT is an online labor market in which people get 

paid a small amount for each task they accomplish (Vakharia and Lease 2013). Concretely, 

AMT is a platform connecting requesters (in our case, the data analyst) with workers. 

Workers look for jobs that fit their abilities and needs (Schultze et al. 2012). “Requesters” 

convey the difficulty of the tasks they publish, and the rewards connected to their completion 

through the description of these tasks: framing the tasks correctly is therefore of crucial 

importance. And what makes framing difficult beyond the variability of skills available in the 

workforce, is that, apart from money, workers are also motivated for intrinsic reasons (fun, 

developing skills, building up a track record, etc.). Moreover, requesters are in competition 

with other requesters for the attention of workers, while workers and requesters in general 

have access to very limited information about each other, which further complicates the task 

of establishing a person-job fit. Experienced users of the platform manage to have access to 

private information, however: requesters can maintain a list of workers that have worked for 

them and workers can maintain a list of requesters they have worked for. Consequently, based 

on their experience, users can build a list of trusted partners. In addition, external services 

have emerged to help requesters frame their tasks and to help workers vet requesters (Irani & 

Silberman 2013). The latter may also provide workers with an occupational community and a 

professional identity (Lehdonvirta & Mezier 2013). 

Data scientists have embraced AMT in particular for a wide variety of activities ranging from 

data collection (e.g. Snow et al., 2008), and image analysis (Maisonneuve and Chopard, 

2012), to interview transcription (Marge et al., 2010), and copy-editing (Bernstein et al., 

2010). AMT has been heralded as a quick and easily accessible means for doing behavioral 

experiments (Mason and Suri 2012). Rand (2012) reviews a number of replication studies and 
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draws the conclusion that AMT is reliable as a platform to run experiments on (for instance 

Sprouse (2011) reports no difference for linguistic judgments with respect to syntax between 

AMT and laboratory settings). 

We used AMT in the context of a recent research project  as  a  means  to  address  the  “Names-

Game”:  in  innovation  studies,  the  use  of  disambiguation  techniques  to  reclassify  patent  data  at  

the   inventor   level   is   called   the   “Names-Game”   (Raffo   and   Lhuillery   2009).1 Matching is 

absolutely non-trivial as names are sometimes misspelt and the same person can be referred to 

in a variety of ways, and scientometric research hinges on the ability to link research outputs 

to the researchers responsible for them in data-intensive environments. The difficulty lies in 

deciding whether different works with similar author names belong to the same person or not. 

Hence, given limited resources, automated methods are typically preferred for matching and 

disambiguation (Smalheiser and Torvik 2009). See Cuxac et al., Gurney et al. (2012), and 

Wang et al. (2012a) for recent examples. Yet, manual matching is considered to yield higher 

levels of accuracy (Veve 2009). This activity was pioneered by Trajtenberg et al. (2006), and 

considerable efforts have indeed been devoted by different research groups in the past years to 

disambiguate inventors listed in patents and identify academic researchers amongst them. 

This has been mainly done in three different ways: i) matching inventors to research staff lists 

(Thursby et al. 2009; Lissoni et al. 2008; Lissoni et al. 2009);;  ii)  searching  for  the  “professor”  

title   in   the   inventors’   name   fields   (Schmoch  2007;;  Czarnitzki   et al. 2007; Von Proff et al. 

2012); and iii) matching inventors to authors of scientific publications (Noyons et al. 2003a, 

2003b; Schmoch et al. 2012; Dornbusch et al. 2013; Maraut and Martinez 2014).2 In the light 

of all this literature, we have explored the possibility to ask anonymous reviewers in 

crowdsourcing platforms to carry out authorship disambiguation manually, in a cost-efficient 

and reliable way.  

 
b. The many known pitfalls of using AMT  

In AMT, workers get to select the tasks they want to carry out among the ones that are 

available. Typically, a limited number of workers will end up doing the brunt of the work 

(Bernstein et al., 2010). It is possible for the requester to require that workers pass a 

qualification first. Alonso and Mizzaro (2012) find that workers who have passed a test are 

                                                        
1 For information on most recent developments see the European Science Foundation Research Networking 
Programme – Academic Patenting in Europe (APE-INV) at http://www.esf-ape-inv.eu/ .  
2 See also NSF project to link MEDLINE papers with USPTO patents: 
http://www.nsf.gov/awardsearch/showAward?AWD_ID=0965341  
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more likely to complete the tasks. Furthermore, Wang et al. (2012b) find that the workers 

who have past the qualification tests deliver work of slightly higher quality. In addition to 

prescreening, Chandler et al. (2014) suggest gradually selecting workers on the basis of past 

engagement. There are several types of qualification tests. The most prevalent is to test for 

past performance in terms of proportion of work that has been approved. Ipeirotis (2010a) 

observes that this test is very easy to trick. Other tests concern (self-reported) skills and the 

location of workers derived from their IP-address. Demartini et al. (2012) find that while in 

general Indian workers performed worse than their American counterparts, for items related 

to  local  Indian  news  they  performed  better.  Recently,  AMT  added  a  “master”  qualification  to  

the menu of tests that can be set. AMT attributes this qualification to workers it considers 

trustworthy. Despite (or because of) the opacity of the criteria on the basis of which the 

qualification  is  attributed,  restricting  the  tasks  to  “master”  workers  will  likely  lead  to  higher  

quality results (Ipeirotis, 2012). Note however that Amazon charges a higher fee for work 

carried out this way. Furthermore, as for instance reported by Chandler et al. (2014) workers 

are slower to react. 

In order to attract the attention of workers, it helps if the tasks are relatively easy to grasp: the 

quality of task formulation strongly influences the quality of results obtained in AMT (Kittur 

et al., 2008).  It also helps if there are not too many other tasks competing for attention. 

Ipeirotis (2009) observed that most tasks are launched during weekdays and that most 

workers are active during weekend. If this still holds, it would be better to launch the task 

during the weekend. It also helps to offer higher pay than other requesters. According to 

Horton and Chilton (2010) a higher effort level can be expected in return for a higher pay. 

They also discovered that a number of workers clearly prefer earning total amounts that are 

evenly divisible by 5 and speculate that this might be because these workers pursue earning 

targets. The quality of the work does not seem to be affected by the level of payment, 

however (Mason and Watts, 2009; Mason and Suri, 2012). Nevertheless, Acemoglu et al. 

(2014) suggest one could implement a dynamic pricing mechanism in which tasks that have 

not been completed because they appear too cumbersome will be offered again at a higher 

price. In order to improve quality, Shaw et al. (2011) find that it helps to indicate that 

payment will be linked to the extent in which responses conform to responses given by peers. 

Redundancy in responses can also help counting the cheating, which, according to Eickhoff 

and  de  Vries   (2013),   has   become  more   prevalent   recently.  The   introduction   of   the   “master  

qualification”  mentioned  before  might  serve  to  combat  this  practice.  Hirth  et al. (2013) blame 
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the relative anonymity of workers in combination with an appeal limited to the profit motive. 

Kittur et al. (2008) already observed that the best way to prevent cheating is to make it more 

difficult than simply playing along. Among the other measures to improve quality, Ipeirotis 

(2010b) advices that one should announce the rules of the game clearly in the task description 

an announce sanctions if deficiencies are observed. Franklin et al. (2011) warn however that 

refusing to pay ex post may provoke a backlash from workers, who rate requesters on 

dedicated forums such as TurkOpticon and Turker Nation. Finally, Kittur et al. (2008) found 

a significant increase in the quality of the data obtained after the inclusion of additional 

questions with verifiable answers. If answers can be verified automatically this can be used 

for immediate feedback. Otherwise it can be used to identify misbehavior ex post (Shaw et 

al., 2011). According to one worker interviewed by Kittur et al. (2012) tasks are often 

monotonous. The resulting boredom may be a cause for abandoning the task (Sun et al., 

2011). The inclusion of additional questions may also serve to alleviate this boredom. 

c. A prototype for crowdsourcing name disambiguation 

Based on these insights, we designed a prototype using the AMT platform for name 

disambiguation. AMT workers were asked replicate some of the manual checks done in the 

process of building the database of Spanish author-inventors described in Maraut and 

Martinez (2014). Building this database had entailed combining information from more than 

15.000 patent applications and 150.000 scientific publications, with no limitation in terms of 

fields, regions or types of institutions. An added difficulty was the mix of specific features of 

Spanish names (e.g. multiple surnames) and the frequent existence of input errors due to poor 

understanding of the Spanish name patterns, apart from the lack of structure of person and 

institution name fields in large bibliographic databases. All this suggested that human 

intervention could be particularly helpful to build training and validation sets in semi-

supervised machine learning techniques. 

Maraut and Martinez (2014) used a semi-supervised technique, combining automated 

matching techniques with human validation of dubious matches, and ended up identifying 

more than 4.000 author inventors. They first built clusters automatically by assigning a 

similarity score to author-inventor pairs on the basis of a weighted combination of a variety of 

matching and disambiguation indicators, where name matching indicators rely on 

approximate string matching using complex edit distance measures and entity resolution 

techniques and disambiguation indicators rely on contextual information, such as institutional 
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affiliation, discipline and geographical location. 3 And then, by way of the clustering step, 

author and inventor identifiers likely to belong to the same person were grouped together and 

linked back to their corresponding patent applications and publications. In the original 

methodology, experts then intervened to manually check the dubious matches identified in the 

clusters, so that false pairs could be excluded and validated matches could be later used to 

improve the disambiguation recursively and improve precision of the final dataset. Dubious 

matches would be document pairs from whose validity is more difficult to assess due to 

common names, spelling mistakes, mobility (different affiliations) or multi-disciplinarity 

(different areas of specialization) of their corresponding authors and inventors. Since the 

number of dubious matches to be checked increases with the size of the initial sample, expert 

validation raises substantially the cost, time and effort needed to develop a large database of 

this kind. 

With respect to AMT, Wang et al. (2012b), who had previously explored the design of AMT 

tasks to tackle entity resolution. They tested two ways to present the task: as a pair of records 

for which similarity has to be judged and as a list of records for which the distinct entities 

need to be enumerated. In both cases they provided workers with the opportunity to indicate 

the reasons for their choice. Overall, the pair based presentation appeared to be more popular 

with workers despite the fact that workers who had opted for the cluster-based presentation 

managed to complete these tasks more quickly than their colleagues who had opted for the 

pair-based task. Given the observation by Georgescu et al.  (2012)  that  “most  problems  arise  

from workers being too quick and not paying   enough   attention   to   the   task”   the   pair-based 

presentation would seem the better choice. The overall results for both variants in terms of 

precision and recall were very similar however. We opted for a cluster-based rather than a 

pair based presentation because the clues provided by the coherence of a publication record 

seemed important in this context. Moreover as each cluster may cover a large number of pair-

based comparisons, the cluster representation requires far less separate tasks, and so it 

becomes feasible to offer a higher reward per task. The task presentation was similar to the 

one proposed by Wang et al. (2012). We also ask workers to identify the gender of the 

inventors in the list, as the analysis of the responses could give further indications with 

regards to the trustworthiness of the workers. It also might make the task more interesting to 

some people.  

                                                        
3 For a detailed description of the methodology see Maraut and Martinez (2014), which makes use of a density-
based technique known as DBSCAN (Ester et al. 1996) that relies on the notion of density reachability and 
connectivity. 
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We then asked AMT workers to review a number of randomly selected clusters from the 

database produced by Maraut and Martinez (2014) prior to expert validation, and compared 

their responses of to those of the experts engaged by Maraut and Martinez, where the latter 

were   used   as   a   sort   of   ‘gold   standard’.   More   precisely,   we   randomly   selected 99 not-yet 

validated clusters of patents and publications likely to correspond to the same person, 

according to name similarity, affiliation, discipline, etc. which cover a total of 2106 distinct 

patent-publication pair comparisons. Clusters including pairs with uncommon names of 

authors and inventors that were exactly matched (e.g. no spelling mistakes) were deliberately 

excluded from this sample in order to avoid offering too simple tasks to AMT workers. The 

information on publications and patents provided to AMT workers to carry out each task 

includes:  i) document type (whether the particular document presented is a patent application 

or journal article); ii) first and last names of authors and inventors (as they appeared in the 

original documents); iii) non-name information available in the documents (address, 

institution of affiliation in the case of journal articles, name of patent applicant in the case of 

patents); and iv) original document title (of the patent or the journal article). The title of the 

document is linked to a version of the document available online, so that the worker can get 

additional information if needed (e.g. abstract, coauthors). In  AMT,  ‘checking  whether  all  the  

patents  and  publications  included  in  a  given  cluster  belong  to  the  same  person’  was the name 

of the AMT granular ‘task’ (HIT: human intelligence task), while requests to AMT workers 

were submitted  in  ‘batches’,  each  batch  comprising several individual tasks. 

d. Experiments, results, and issues 

In order to test our protocol with respect notably to the price offered, we first submitted 

several batches of 10 tasks each, each of which could be resolved by a maximum of five 

workers with a prospective reward per task of 0.05 USD and 0.10 USD respectively, limiting 

their visibility to workers with a good record. These batches failed to elicit sufficient 

response, as in each only three tasks were completed over the next days by one worker in the 

first batch and three distinct workers respectively in the second batch. We then submitted two 

more batches offering a much higher reward of 0.50 USD per task completed. We made the 

first batch visible to all workers on the platform; the second only to those for whom more than 

60% of past work had been approved by requesters. This time, all tasks were completed 

within a day after publication by 17 workers. 

We next launched nine different batches of either 10 or 50 distinct tasks, with a reward per 

task fixed at 0.20 USD where each task was made available to a maximum of five different 
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workers. The nine batches were published sequentially in the same week, from Thursday 3 

April 2014 to Thursday 10 April, at randomly selected times of the day, with at least 20 hours 

difference between them. Each batch remained posted for 24 hours at the AMT website. With 

a reward of 0.20 USD per task the maximum reward a worker could thus earn per batch was 

five times higher for the batches with 50 clusters (10 USD) than for the batches with 10 

clusters (2 USD). The batches were only visible for workers showing good quality working 

records, more precisely, the qualification required was greater than 98% approval rate for 

more  than  100  approved  tasks.  The  batches  were  publicized  with  the  term  ‘Spanish  names’  as  

a keyword on the AMT platform in order to be able to attract workers with some knowledge 

of  Spanish.  In  addition,  “disambiguation”  and  “record  linkage”  were  given  as  keywords.   

Forty five (45) different workers participated in this experiment, 14 worked in more than one 

batch (31%), and 727 tasks were completed in total, presenting 99 different clusters in an 

equal number of distinct tasks. Table 1 recalls the main features of the experiment together 

with information on number of responses and worker participation. As generally reported in 

similar contexts, the distribution of effort was highly uneven.4 

 

Table 1. Main features of the experiment 

Batch 
ID Time created 

Different 
tasks 

offered 

 
Redundancy 

of tasks 
offered 

Different 
tasks 

completed 
by at least 

one 
worker 

Total 
number of 

tasks 
completed 
(including 

redundant) 

Number of 
different  
workers 

completing at 
least one task 

Number of 
author-
inventor 

pairs  
with worker 
judgment (i) 

Amount 
paid to 

workers 
(USD)(ii) 

1480448 Thu Apr 03 22:40:16 GMT 2014 50 5 49 149 8 1726 29.80 
1481211 Fri Apr 04 15:59:12 GMT 2014 50 5 47 64 3 836 12.80 
1482480 Sat Apr 05 19:08:58 GMT 2014 10 5 10 20 3 841 4.00 
1482891 Sun Apr 06 07:01:04 GMT 2014 50 5 45 45 1 498 9.00 
1484530 Mon Apr 07 19:04:14 GMT 2014 50 5 49 109 9 1661 21.80 
1485453 Tue Apr 08 10:31:01 GMT 2014 10 5 10 32 6 460 6.40 
1487123 Wed Apr 09 08:12:19 GMT 2014 10 5 10 26 4 716 5.20 
1488800 Thu Apr 10 06:23:30 GMT 2014 10 5 10 40 12 342 8.00 
1489909 Thu Apr 10 22:32:05 GMT 2014 50 5 50 243 28 4837 48.60 

    99 727 45 11917 145.40 
 

Note: (i) The number of author-inventor pairs set out in the table for each batch corresponds to the number of all different 
combinations of article-author and patent application-inventor pairs for which a judgment from AMT workers can be inferred 
based on their responses to the cluster-based task format presented in the Annex; (ii) The cost indicated does not include fees 
paid to Amazon. 

 

                                                        
4 The Gini coefficient for the number of tasks submitted per worker is 0.75. 
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Among the 99 distinct tasks presented, 13 were only offered in one batch, the other 86 

appeared in more than one batch (23 in two; 28 in three; other 28 in four; and 7 in five 

different batches). Tasks differed in terms of number of documents (articles and patent 

applications) presented to workers as being potentially authored by the same person, ranging 

from small tasks with only 2 documents to the largest tasks with 61 documents, with an 

average number of documents per batch per task between 8 and 18 and high standard 

deviations (Table 2). 

 

Table 2. Number of documents (articles + patent applications) per task 

Batch Tasks 

Number of documents (articles + patent applications) 
Mean Std. Dev. Min Max 

1480448 49 7.98 4.70 3 20 

1481211 47 7.79 6.12 2 32 

1482480 10 18.40 16.79 5 57 

1482891 45 8.04 5.87 2 30 

1484530 49 10.90 13.32 2 61 

1485453 10 13.70 15.60 4 54 

1487123 10 14.20 12.20 3 41 

1488800 10 11.10 15.91 3 54 

1489909 50 11.30 12.26 2 61 
 

 

Since more than one worker could complete the same task in a given batch (up to the 

maximum of 5 workers allowed), there was more than one response even for the 13 tasks 

offered in only one batch. No task was systematically ignored by workers, but redundancy of 

responses was achieved only for 93 of them because 6 were completed only once. These six 

tasks are slightly larger than the rest, with 14 documents on average compared to a mean of 

10 for the others, but the difference is not statistically significant, suggesting that other factors 

counted  more  than  size  for  their  lower  uptake.  As  regards  other  features  of  workers’  behavior  

and effort intensity, we find that responsiveness of workers improves over time in terms of 
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the proportion of a batch that is completed after 24 hours5 and also, in contrast to the findings 

reported above,  that  weekends  seem  to  be  worse  than  weekdays  in  terms  of  workers’  activity.6 

To assess the quality of responses, we calculated a rate of agreement with experts7 at the pair 

level and tested whether its distribution differed significantly across different batches, tasks or 

workers, by using the Kruskal-Wallis rank test. This test compares ranks of observations from 

the lowest to the highest score across groups and tests if the rank sum for each group is the 

same or not (if the groups were equal, their rank sum would be equal too), where the null 

hypothesis is that the distribution of the outcome variable is identical across groups.  As 

shown in Table 3, agreement rates differ significantly across batches, tasks and workers. 

 

Table 3. Kruskal-Wallis tests of agreement with experts at the pair level across batches, tasks 
and workers  

 Chi-squared p Chi-squared with ties p 

Batches 144.327 with 8 d.f. <0.0001 409.151 with 8 d.f. <0.0001 
Tasks 990.357 with 98 d.f. <0.0001 2807.549 with 98 d.f. <0.0001 

Workers 413.156 with 44 d.f. <0.0001 1171.250 with 44 d.f. <0.0001 
 
Note: When some scores receive tied ranks, a correction factor is used and a slightly different value of chi-squared is 
obtained. 
 
 

Differences across tasks might be due to differences in task complexity. The differences 

across batches and across workers, however, are likely to be at least in part due to the fact that 

each batch is a different collection of tasks and workers, depending on when they were active, 

had a choice among a different offer of tasks. Table 4 checks whether agreement rates in 

batches is different from agreement rates for the author-inventor pairs among them that also 

occur in other batches. It turns out that the proportion of workers in the batches who agree 

with the expert assessment of author-inventor similarity is not significantly different from the 

proportion of workers in the other batches agreeing with the expert in 7 out of 9 batches. 

Furthermore, the agreement between the expert and the judgment arrived at by the majority of 

workers in a batch is not significantly different from the rate of agreement elsewhere for any 

                                                        
5 A Pearson product-moment correlation between launch dates of batches and their completion rate is equal to 
0.7, significant at 5%. 
6 The two batches launched in the weekend have of 0.4 and 0.18 compare to the median and mean of 0.6 for 
batches launched during weekdays. 
7  The expert validated pairs included in the final dataset of Maraut and Martinez (2014), which can be 
considered as a gold standard for the AMT responses. 
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of the batches. So, even though the speed with which one obtains results might be dependent 

on factors beyond the control of the requester, the quality of results seems not to be affected.  

 

Table 4. Expert agreement at the pair level, differences across batches 

Batch Available 
author-inventor 

pairs 

Matched pairs 
in other batches 

KS≠  
(i) 

p-value Chi-squared 
(ii) 

p-value 

1480448 644 588 0.22 0.000 296.52 <0.001 
1481211 584 570 0.38 0.000 196.47 <0.001 
1482480 425 425 0.15 0.000 58.99 <0.001 
1482891 505 505 0.19 0.000 327.12 <0.001 
1484530 1258 1233 0.17 0.000 689.13 <0.001 
1485453 166 166 0.07 0.779 108.71 <0.001 
1487123 325 115 0.36 0.000 49.97 <0.001 
1488800 100 97 0.10 0.681 73.77 <0.001 
1489909 1353 1280 0.13 0.000 577.66 <0.001 

 

Notes: (i) Kolmogorov-Smirnov test of dissimilarity among proportion of workers who agree with the expert. (ii) Test for 
independence between batches and their controls based on the frequency the majority of workers agree with experts on pairs. 

 

A similar set of tests of atypical expert agreement among workers does find significant 

differences for many of them. For 18 out of 45 workers the null-hypothesis of independence 

of worker agreement given majority agreement on the same author-inventor pairs cannot be 

rejected. Typically these workers complete only a few tasks, however, which suggests that 

experience counts. 

As should be clear from these results, and although we believe that our experiments represent 

a significant step toward partly automating name disambiguation in a data-rich environment 

with crowdsourcing and human computing via AMT, they also point towards the difficulties 

faced by “requesters”   with   respect   to   the   nature   and   the   quality   of   the   work   that can be 

supplied through the platform. A preliminary, mostly business-oriented, answer to these 

difficulties, has been associated with the emergence of intermediary companies that post 

human intelligence tasks for the sake of others (Ipeirotis, 2010c). However, we would 

however like to argue that there is much more to understand here. The previous academic 

literature that has tried to analyze the pitfalls of  AMT   “technically”  might   have  missed   an  

important point: even if AMT is a set of algorithms, and even if the human computing steps 

can also be dealt with incentives mechanisms, AMT still is an online labor market, composed 

on online workers who are not naïve (Chandler et al., 2014), contrary maybe to the naïveté 
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with which previous research has sometimes dealt with the economic and managerial aspects 

associated with any known labor market, even more so in the digital world where further 

issues are known to be prevalent. To name but 2 about which the next section will insist, the 

fact that AMT is a platform between requesters and workers implies a multi-sided nature that 

can result in self-selecting outcomes, and the fact that workers choose online on which 

problem they work implies that the management of their online attention is also a key issue. 

3.  “Human  computing”  actually rests on online labor markets 
 

a. AMT as a two-sided platform 

The experiments reported on in the previous section have shown a general dependence of 

work supply in AMT with respect to price signals, which is not at all surprising: what is more 

surprising is that, when we looked at the literature to find elements about the price elasticity 

of online work supply, we found only very few and largely inconclusive studies (Franklin et 

al., 2011; Mason & Watts 2010; Yan et al., 2010). We therefore gathered a dataset by 

crawling   AMT’s   website   every   3   minutes   during   a   period   of about 2 months in order to 

investigate temporal data on several hundreds of real AMT projects and to measure the mean 

speeds  at  which  individual  tasks  disappear  (are  “executed”)  from  available  projects, that is to 

say, to investigate the  “problem  of  problem  choice”,  as  we  had  suggested  to  name  it  after  C.S.  

Pierce in the context of scientific communities (Carayol & Dalle, 2007), or else the 

determinants of worker choice among the many problems that are offered on AMT (Dalle et 

al., 2014). The global allocation of online efforts in online communities (Dalle & David, 

2005; den Besten, Dalle et Galia, 2008) indeed results from the aggregation of all of the 

workers’  individual  choices  among  available  problems. 

In AMT, compared to other communities such as open-source software or Wikipedia where 

direct coordination between workers is instrumental (den Besten & Dalle, 2014; Rossi et al., 

2010), choices are specially affected by the pricing of tasks and by other characteristics of 

tasks and projects, even if there is coordination among workers on dedicated forums. In this 

context, we found preliminary evidence according to which the pricing of individual tasks 

(“Price”)  does not seem to influence workers choice, at least directly, contrary to “Size” i.e. to 

the number of individual tasks in a given AMT project. This observation is consistent with 

workers simply maximizing their wages by increasing their productivity over time through 

the selection of groups of tasks on which they could focus and specialize for a sufficiently 

long amount of time, and coherent with Franklin et al (2011). Furthermore, and contrary to 
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the  length  of  the  title  given  to  AMT  projects  (“Length(Title)”),  the length of task descriptions 

on  AMT’s  website   (“Length(Desc)”)   increases the speed at which they are executed, which 

could correspond to a preference from workers for more detailed descriptions when choosing 

among available tasks, and/or  to  the  fact  that  tasks  that  are  “better  thought  through”,  both  in  

their description and in the process leading to their execution, seem able to attract workers. 

 

Table 5. Factors affecting online labour supply – OLS (***: < 0.001 significance level) 

Model 1 2 3 4 
Price -1.0 -0.1 -1.7 -0.8 
Size 8.7e-

05*** 
 8.2e-

05*** 
 

Log(Size)  1.25***  1.19*** 
Length(Title) -7.7e-03 -6.1e-03   
Length(Desc)   5.3e-

03*** 
5.3e-
03*** 

R2 0.2073 0.1974 0.3053 0.3 
 

In order to investigate these issues further, we searched our dataset for occurrences where the 

same HIT Group (same title, description and Requester, same qualification for workers) had 

been posted several times with different prices for individual tasks, further limiting our 

dataset to successive pairs with positive price variation or to relatively small positive 

variations. Even then, the variation in price did not appear as significant. We further found, by 

experimenting directly on AMT, that workers appeared to be sensitive to price signals with 

respect to their problem of problem choice but through the assessment of the difficulty of the 

tasks that they could execute via the price that has been set for those tasks. This finding is 

compatible with the former, since assessing the difficulty of tasks through price is coherent 

with the strategy of workers who would seek to maximize their productivity by focusing on 

relatively easy and well-defined   tasks,   and  with  Yan   et   al.   (2010)’s  who suggest that low-

priced tasks tend to be addressed more rapidly. 

In a sense, if they suggest that rational online workers simply tend to maximize their rewards 

by selecting easy and repeatable tasks, these results are not surprising at all, even if they point 

towards a somewhat different reality than the one initially envisioned by Mason & Watts 

(2009). However, they might also suggest a broader conclusion: that AMT, as a two-sided 

platform that actually allows for the existence of a finely granular labor market, might have 

self-selected a category of online workers that would specialize on large series of easy tasks, 

maybe because they have another occupation or because they need to be able to stop and 
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switch easily between their online and their offline tasks, which could be typically the case for 

mothers of young children, be they in the US or in India. This interpretation clearly warrants 

further studies, all the more so as our results here are associated with regular workers, since 

they  were  selected  according  to  the  “Master”  qualification  that  is  granted  by  Amazon  itself  to  

its regular workers, and that implies a higher price billed by Amazon to Requesters 

(independently of the price paid to workers). However, it points toward the fact that online 

platform are online platforms, and that they cannot avoid all the economic and managerial 

consequences associated with online platforms in the digital world, be they dedicated to 

“human   computing”.   Not   only   does   price   matter:   furthermore,   there   are   elements   of   self-

selection  between  both  sides  of  platforms,  in  relation  with  the  difficulty  of  ‘spot’  online  labor  

markets to convey information on the quality of workers and to deal with information 

asymmetries   in   the   simplest   “peaches   or   lemons”,   à   la   Akerlof,   way;;   namely   here,   a   very  

reasonable outcome might be that workers and requesters self-select on both sides, according 

to a specific kind of tasks – simple and repetitive ones in the case of AMT. A corollary, 

whose importance for the use of human computing in data-rich environment cannot be 

minimize, is then that AMT might not be an appropriate tool for other kinds of tasks, which is 

a straightforward conclusion but a conclusion that is not clear at all in the existing literature, 

though intensely burgeoning. Needless to say, there might be other platforms dedicated to 

other types of online work, and the market might simply have segmented itself: but we now 

present simulation results that point towards not only a methodology in order to analyze 

online labor markets, yet also to a higher level of generality of the interpretation we are 

suggesting. 

b. Simulations show the relevance of online workers’ attention 

Simulation generally allows for the exploration of a larger variety of scenarios. Practically 

speaking, we developed a simulation tool to replicate AMT because it was thought to be 

useful when engaging with workers who expect to be paid notably as it allows for the testing 

of scenarios that might have a negative impact on the reputation of the requester if carried out 

in real;8 and it allows for extending the scope of the scenarios to include information on the 

environment that a requester at AMT cannot control directly. In this respect, the primary aim 

of our simulator was to investigate what quality to expect from workers in different settings. 

However, results from our simulation model confirmed the importance of understanding the 

                                                        
8 Requester reputation matters since workers will prefer to work for those with a good reputation (Silberman et 
al. 2010, Martin et al. 2014), just as worker reputation matters to requesters (Peer et al. 2013). 
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determinant of online work supply: not only with respect to its quantity and elasticity to price, 

but also with respect to, again, the problem of problem choice faced by online workers. How 

do they choose between only tasks? Indeed, our simulation exercises indirectly stressed the 

importance of workers online selection behaviors and of the management of their attention 

within the context of AMT. 

The main basic features of AMT are represented in our simulation model. As on AMT, tasks 

– for  now,  only  “yes  or  no”  questions,  e.g.,  does  this  pair  of  names  refer  to  the  same  person?  – 

are organized in batches that have in common the requester that proposed them and the 

remuneration for each task executed in the batch. Furthermore a requester can set a number of 

assignments per task. With this system, each task can be submitted more than once, and to 

different workers, leaving it to the requester to aggregate the results obtained. We opted for a 

setting in which the marketplace of requesters and workers follows a turn-based discrete-time 

approach. At each step, we calculate the tasks proposed by each requester. Then we simulate 

the activity of each worker. First, we determine the tasks the worker sees, by applying a 

particular filter (for example:   “decreasing   number   of   tasks   in   batches”   or   “increasing  

remuneration”).   The   worker   then   chooses   one   or   several   batches,   depending   on   various  

criteria (including remuneration or date of creation of the batch), and answers the questions. 

We included in   our   simulator   the   notion   of   expiration   for   a   task   (called   “allotted   time”   on  

AMT). After a certain time (which can be chosen by the requester), if any worker has not 

executed a task, it will automatically be removed from the market. In order to determine the 

appropriate parameter settings, model candidates were benchmarked against results from the 

literature as suggested by Meyer (2011). We were notably able to reproduce an important 

stylized fact according to which finding that the number of tasks offered at the same time 

affects how many of them are completed by Franklin et al. (2011).  

We notably used this simulation model to investigate the trade-off between quality assurance 

through the inclusion of test questions for which the correct answer is known, and quality 

assurance through the assignment of the same task to multiple workers. Workers were 

assigned a chance of successfully completing a task of between 50 and 100% and redundancy 

consisted in 5 assignments per task. To aggregate answers, the answer of each worker that 

worked on a given task was weighted by the estimated success rate of this worker. Two 

alternative methods were used to update estimated success rates: (1) including test tasks into 

our other tasks with a set ratio, a worker estimated success rate being the percentage of test 

questions he answered correctly; and (2) not placing test tasks into other tasks, a worker 
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estimated success rate being the percentage of questions for which he answered the same as 

the majority. In this framework, it turned out that similar results can obtain with both methods 

and that, consequently, requesters can arbitrate between the cost of introducing tests tasks for 

verification of work and redundancy. 

However, the amount of redundancy that yields similar quality to a given proportion of tests 

tasks   critically   depends   on   parameters   and   notably   on   the   “scarcity   index”,   i.e.   only   the  

amount of only work supply, understood both globally and with respect to each requester, 

simply because work supply has to be big enough to ensure that all assignments are 

completed. Clearly, our simulation model did not include at this stage a proper supply 

function, yet, that would determine scarcity endogenously i.e. based on factors such as price, 

requester identity, size, etc. In future work, we definitely plan to incorporate the empirical 

results presented in the previous section in a later version of the simulator. But the existing 

simulation expetiments still stressed how critical work supply was, not only with respect to 

the mere completion of the tasks, yet also with respect to more qualitative features such as the 

performance of quality assurance methods, since they are themselves dependent upon the 

actual completion rates. 

Furthermore, other critical issues showed up when we imagined an environment with pre-

defined size for every new batch created each period (10, 25, 50, 100, 200, 400 tasks per 

batch). The total number of tasks for every type of batch was the same (800, so we had for 

example 16 new batches of 50 tasks by period). This non-homogeneous distribution actually 

led to some incoherence when workers were simulated as using different sorting functions 

about batch size. We understood that we actually lacked information about the sorting 

functions that workers use,  “biggest  first”  (in  terms  of  numbers  of  HITs)  being  the  default  on  

AMT’s   landing   page,   at   least   as   of   2014. Nor do we have clues of the number of pages a 

worker will see on AMT before choosing a task in a batch. As a consequence, we cannot 

control for the relative attractiveness of the batches that appear first according to the dominant 

sorting function in the simulations. 

This points towards is a much more general consequence: we do not know how workers on 

AMT actually choose their tasks, not only with respect to price or to the number of HITs 

available (Size) but also, more generally, to the way their attention is managed in this online 

environment. Empirical findings reported in the previous section with respect to the influence 

of Size of batches can result not only from dynamic wage maximization from workers, but 
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also from some behavioral consequences of the way attention is managed online, and of the 

way it affects online  workers’ problem of problem choice. Obviously, both interpretations can 

coexist and reinforce one another: it might be because AMT is populated mainly by workers 

seeking large batches of simple tasks that the default presentation favors big batches, and 

reciprocally. Here again, positive reinforcing feedbacks might have been, and might be, at 

work within AMT, with critical consequences with respect to how AMT can be used as a 

human computing platform in data-rich ecosystems, since AMT is, first and foremost, a two-

sided platform that has to manage, even implicitly, the attention of online workers. 

4. Conclusion 
 

Human computing could considerably help implement semi-supervised machine learning 

methods in data-rich ecosystems, a key element of big data issues. However, it implies not 

only to find appropriate ways to organize this problem as the resolution of micro-tasks 

distributed among multiple workers on line through online platforms like AMT: it also 

implies  for  “requesters”   to  find  suitable  workers  via  online  labor  markets,   the  existence  and 

the characteristics of which strongly depend on the platforms themselves – a conclusion that 

is not at all a surprise to economists and management scientists. However, whatever the many 

pitfalls already addressed in the intensely burgeoning literature on these matters, probably as a 

consequence of the importance of the promises of crowdsourcing and human computing in 

data-rich environments, and the many others on their way to be addressed, our own practical 

experience and experiments via AMT, about name disambiguation techniques, about pricing 

and through simulation, when analyzed through the lenses of the difficulties faced, provides 

evidence for a somewhat different reality. 

Whatever the second-order optimization techniques that have been, are and can be developed 

with respect to using human computing through online platforms, further difficulties might 

still always arise until the first-order conditions associated with the economic and managerial 

nature of such environments acting as online labor markets, are neglected. Simply said, AMT 

is a multi-sided platforms and it is highly probable that workers have been self-selected along 

with tasks offered in a dynamic manner, maybe in comparison with other platforms, like 

oDesk, whose history might have been different; and even under these inherited constraints, 

the management of the attention of workers does play a crucial role. In concluding so, we do 

not feel to have unearthed a blandly new phenomenon, but we hope that we could contribute 

to shift the direction in which research is currently conducted with respect to human 
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computing in a direction closer to economic and managerial sciences. A straightforward 

consequence is then that more studies are now needed in this respect, to which we hope we 

can contribute: a consequence which, though straightforward, is in this case, we believe, of 

acute relevance. 
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