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Abstract: We analyze the formation of public good agreements under the weakest-link
technology. Coordination of and cooperation on migration policies, money laundering mea-
sures and biodiversity conservation e§orts are prime examples of this technology. Whereas
for symmetric players, policy coordination is not necessary, for asymmetric players cooper-
ation matters but fails, in the absence of transfers. In contrast, with an optimal transfer
scheme, asymmetry may not be an obstacle but an asset for cooperation, with even the grand
coalition being stable. We characterize various types and degrees of asymmetry and relate
them to the stability of agreements and associate gains from cooperation.
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1 Introduction

There are many cases of global and regional public goods for which the decision in one

jurisdiction has consequences for other jurisdictions and which are not internalized via mar-

kets. Reducing global warming and the thinning of the ozone layer are examples in case.

As Sandler (1998), p. 221, points out: “Technology continues to draw the nations of the

world closer together and, in doing so, has created novel forms of public goods and bads that

have diminished somewhat the relevancy of economic decisions at the nation-state level.”

The coordination of migration policies, the stabilization of financial markets, the fighting of

contagious diseases and the e§orts of non-proliferation of weapons of mass destruction have

gained importance through globalization and the advancement of technologies.

A central aspect in the theory of public goods is to understand the incentive structure that

typically leads to the underprovision of public goods as well as the possibilities of rectifying

this. In this paper, we pick up the research question already posed by Cornes (1983), namely

how cooperative institutions develop under di§erent aggregation technologies, also called

social composition functions. Among the three typical examples, summation, best-shot and

weakest-link, we focus on the latter.1 Weakest-link means that the benefits from public good

provision depends on the smallest contribution. Examples include the classical example in

Hirschleifer (1983) of building dykes against flooding, but also coordination of migration

policies within the EU, compliance with minimum standards in marine law or enforcing

targets for fiscal convergence in a monetary union, measures against money laundering,

fighting a fire which threatens several communities, curbing the spread of an epidemic and

maintaining the integrity of a network (Arce 2001 and Sandler 1998). Also protecting species

whose habitat covers several countries is best described as a weakest-link public good.

For our analysis, we combine approaches from two strands of literature, which have

developed almost independently: the literature on non-cooperative or privately provided

public goods with a focus on the weakest-link technology and the literature on international

environmental agreements (IEAs), which focuses exclusively on the summation technology.

The IEA literature is an application of a broader literature on coalition formation in the

presence of externalities where we focus on approaches belonging to non-cooperative coalition

theory. We subsequently review these two strands of literature in section 2, set out our

model in section 3 and derive some general results regarding the second (section 4) and first

stage (section 5) of our two-stage coalition formation model, according to the sequence of

backward induction. Since it turns out that the most interesting results are obtained for

1Better shot (weaker link) is a modification of the best shot (weakest link) technology where the marginal
e§ect of an individual contribution on the global provision level decreases (increases) with the level of the
contribution. For a formal exposition, see for instance Cornes (1993) and Cornes and Hartely (2007a,b).
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the assumption of asymmetric players in the presence of transfers, we devote Section 6 to

a detailed analysis on the type and degree of asymmetry which fosters stability and how

this relates to the welfare gains from cooperation. Section 7 briefly checks the sensitivity

of our results to alternative assumptions of equilibrium selection and Section 8 concludes.

Along the way, we will argue that the results for coalition formation and the weakest-link

technology are far more general than and di§erent from those which have been obtained for

the summation technology.

2 Relevant Literature

2.1 Public Goods and Weakest-Link

The first strand of literature on public goods has taken basically three approaches in order

to understand the incentive structure of the weakest-link technology.

The first approach is informal and argues that the least interested player in the public

good provision is essentially the bottleneck, which defines the equilibrium provision and

which is matched by all others who mimic the smallest e§ort (e.g. Sandler and Arce 2002

and Sandler 2006). Moreover, it is argued that either a third party or the most well-o§

players should have an incentive to support the least well-o§ through monetary or in-kind

transfers in order to increase the provision level.

The second approach is a formal approach (Cornes 1993, Cornes and Hartley 2007a,b,

Vicary 1990, and Vicary and Sandler 2002). It is shown that there is no unique Nash equi-

librium for the weakest-link technology, though Nash equilibria can be Pareto-ranked. It

is demonstrated that except if players are symmetric, Nash equilibria are Pareto-ine¢cient.

Improvements to this outcome are not considered in the form of coalitions but only by

allowing monetary transfers between individual players. Because this changes players’ en-

dowments, it may also change their Nash equilibrium strategies as income neutrality does no

longer hold (as this is the case under the summation technology). For su¢ciently di§erent

preferences, this may increase the weakest player’s provision level which may constitute a

Pareto-improvement to all players. In some models (e.g. Cornes and Hartley 2007b and

Vicary and Sandler 2002), which allow for di§erent prices across players (the marginal op-

portunity costs in the form of foregone consumption of the private good), this is reinforced

if the recipients face a lower price than the donor. In Vicary and Sandler (2002) it is also in-

vestigated how the Nash equilibrium provision level changes if monetary transfers are either

substituted or complemented by in-kind transfers.

Finally, the third approach considers various forms of formal and informal cooperative
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agreements, established for instance through a correlation device implemented by a third

party, leadership and evolutionary stable strategies (e.g. Arce 2001, Arce and Sandler 2001

and Sandler 1998).

Our paper di§ers from this literature because it focuses on institution formation, and it

improves upon this literature in three respects. Firstly, we combine a coalition formation

model with general payo§ functions and continuous strategies. Hence, our analysis of coop-

eration is not based on examples or simple matrix games (e.g. prisoners’ dilemma, chicken

or assurance games) with discrete strategies like the third approach, for which the generality

of results is in doubt. Instead, we continue in the rigorous tradition of the second approach

but consider not only Nash but also coalition equilibria. Secondly, we can measure the

degree of underprovision not only in physical but also in welfare terms, allowing us to go

beyond physical measures, like Allais-Debreu measure of waste, as used by Cornes (1993).

Admittedly, this is easier in our TU-framework as equilibrium strategies are not a§ected by

monetary transfers. Thirdly, our model allows not only for di§erent marginal costs but also

non-constant marginal costs of public good provision. However, in order to remain at a high

level of generality, we do not consider in-kind transfers as some papers have done as they

basically transform the weakest-link into a summation technology for which general results

are di¢cult to obtain in the context of coalition formation.

2.2 International Environmental Agreements

The second strand of literature on IEAs can be traced back to Barrett (1994) and Carraro

and Siniscalco (1993). This literature has grown quite substantially (see e.g. Battaglini and

Harstad (forthcoming) for one of the most recent papers) since then, and the most influential

papers are collected in a recent volume by Finus and Caparrós (2015) with an extensive

survey. Within this literature, the non-cooperative approach is an application of a general

theory of non-cooperative coalition formation in the presence of externalities as summarized

in Bloch (2003) and Yi (1997). A general conclusion is that the size and success of stable

coalitions depends on some fundamental properties of the underlying economic problem.

It has been shown that problems can be broadly categorized into positive versus negative

externalities (Bloch 2003 and Yi 1997). In positive (negative) externality games, players not

involved in the enlargement of coalitions are better (worse) o§ through such a move. Hence,

in positive externalities games, typically, only small coalitions are stable, as players have an

incentive to stay outside coalitions. Typical examples of positive externalities include output

and price cartels and the provision of public goods under the summation technology. If an

output cartel receives new members, other players benefit from lower output by the cartel via
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higher market prices. This is also the driving force in price cartels where the price increases

with the accession of new members. In a public good agreement, players not involved in the

expansion of a coalition benefit from higher provision levels but lower costs. In contrast, in

negative externality games, outsiders have an incentive to join coalitions and therefore most

coalition models predict the grand coalition as a stable outcome. Examples include trade

agreements, which impose tari§s on imports from outsiders or R&D-collaboration among

firms in imperfectly competitive markets where members gain a comparative advantage over

outsiders if the benefits from R&D accrue exclusively to coalition members.

Until now non-cooperative coalition theory has mainly assumed symmetric agents due

to the complexity which coalition formation adds to the analysis (see the surveys by Bloch

2003 and Yi 1997). In the context of positive externalities, general predictions about stable

coalitions are di¢cult. It is for this reason that most papers on IEAs assume particular

payo§ functions and despite symmetry have to rely on simulations. Also for asymmetric

agents hardly any analytical results have been obtained and the few exceptions assume

particular functional forms and typically restrict the analysis to two types of players (e.g.

Caparrós et al. 2011, Fuentes-Albero and Rubio 2010 and Pavolova and de Zeeuw 2013).

Our paper di§ers from this literature in two fundamental respects. Firstly, none of the

papers has investigated the weakest-link technology. Secondly, we demonstrate that for this

technology much more general but also very di§erent results can be obtained compared to

the summation technology. We are able to characterize precisely the type and degree of

asymmetry that is conducive for larger stable coalitions, which includes the grand coalition.

In our conclusions (Section 8), we will argue that the simple coalition game we employ in

this paper is su¢cient to derive all interesting results as more complicated games would not

add much to the analysis.

3 Model and Definitions

We consider the following payo§ function of player i 2 N :

Vi(Q, qi) = Bi(Q)− Ci(qi) (1)

Q = min
i2N

{qi}

where N denotes the set of players and Q denotes the public good provision level, which is

the minimum over all players under the weakest-link technology. The individual provision

level of player i is qi. Payo§s comprise benefits, Bi(Q), and costs, Ci(qi). Externalities across

players are captured through Q on the benefit side.
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In order to appreciate some features of the weakest-link technology, we will occasionally

relate results to the classical assumption of a summation technology. The subsequent de-

scription of the model and its assumptions are general enough to apply to both technologies.

For the summation technology, only Q = mini2N {qi} has to be replaced by Q =
P

j2N qj in

payo§ function (1).2 All important results of the summation technology mentioned in the

course of the discussion are summarized in Appendix A.

Regarding the components of the payo§ function, we make the following assumptions

where primes denote derivatives.

Assumption 1: For all i 2 N : B0i > 0, B00i ≤ 0, C 0i > 0, C 00i > 0 . Furthermore, we

assume Bi(0) = Ci(0) = 0 and limQ!0B
0
i(Q) > limq!0C

0
i(q) > 0.

These assumptions are very general. They ensure the strict concavity of all payo§ func-

tions and existence of an interior equilibria as explained below. For the following definitions,

it is convenient to abstract from the aggregation technology and simply write Vi(q), stressing

that payo§s depend on the entire vector of contributions, q = (q1, q2, ..., qN), which may also

be written as q = (qi, q−i) where the superscript of q−i indicates that this is not a single

entry but a vector, comprising all provision levels except of player i, qi.

Following d’Aspremont et al. (1983), the coalition formation process unfolds as follows.

Definition 1 Cartel Formation Game In the first stage, all players simultaneously choose
a membership strategy. All players who choose to remain outside coalition S act as single

players and are called non-signatories or non-members, and all players who choose to join

coalition S form coalition S ⊆ N and are called signatories or members. In the second

stage, simultaneously, all non-signatories maximize their individual payo§ Vj(q), and all

signatories jointly maximize their aggregate payo§
P

i2S Vi(q).

Note that due to the simple nature of the cartel formation game, a coalition structure, i.e.

a partition of players, is completely characterized by coalition S as all players not belonging

to S act as singletons. The coalition acts like a meta-player, internalizing the externality

among its members. The assumption of joint welfare maximization of coalition members

implies a transferable utility framework (TU-framework). The cartel formation game is

solved by backwards induction, assuming that players play a Nash equilibrium in each stage

and hence a subgame-perfect equilibrium with respect to the entire game. In order to save

on notation, we assume in this section that the second stage equilibrium vector for every

2More precisely, we mean a summation technology with equal weights, which we assume throughout the
paper and therefore will not stress anymore.
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coalition S ⊆ N (denoted by q∗(S) in Definition 2 below) is a unique interior equilibrium,

even though this will be established later in Section 3.

Definition 2 Subgame-perfect Equilibrium in the Cartel Formation Game
(i) First Stage:
a) Assuming no monetary transfers in the second stage, coalition S is called stable if

internal stability: V ∗i (S) ≥ V
∗
i (S \ {i}) 8 i 2 S and

external stability: V ∗j (S) ≥ V
∗
j (S [ {j}) 8 j /2 S hold simultaneously.

b) Assuming monetary transfers in the second stage, coalition S is called stable if

internal stability : V ∗Ti (S) ≥ V ∗Ti (S \ {i}) 8 i 2 S and

external stability : V ∗Tj (S) ≥ V ∗Tj (S [ {j}) 8 j /2 S hold simultaneously.

(ii) Second Stage:
For a given coalition S that has formed in the first stage, let q∗(S) denote the (unique)

simultaneous solution to

X

i2S

Vi(q
∗(S)) ≥

X

i2S

Vi(q
S(S), q−S∗(S))

Vj(q
∗(S)) ≥ Vj(qj(S), q

−j∗(S)) 8 j /2 S

for all qS(S) 6= qS∗(S) and qj(S) 6= q∗j (S).
a) In the case of no monetary transfers, equilibrium payo§s are given by Vi(q∗(S)), or V ∗i (S)

for short.

b) In the case of monetary transfers, equilibrium payo§s, V ∗Ti (q∗(S)), or V ∗Ti (S) for short,

for all signatories i 2 S are given by V ∗Ti (S) = V ∗i (S \ {i}) + γiσS(S) with σS(S) :=P
i2S(V

∗
i (S) − V ∗i (S \ {i})) , γi ≥ 0 and

P
i2S γi = 1 and for all non-signatories j /2 S by

V ∗Tj (S) = V ∗j (S).

Let us first comment on the second stage. Note that the equilibrium provision vector is

a Nash equilibrium between coalition S and all the single players in N \ S. Only because
of our assumption of uniqueness, we are allowed to write V ∗i (S) instead of Vi(q

∗(S)). As we

assume a TU-game, monetary transfers do not a§ect equilibrium provision levels. Transfers

are only paid among coalition members, exhausting all (without wasting any) resources

generated by the coalition. Non-signatories neither pay nor receive monetary transfers. The
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"all singleton coalition structure", i.e. all players act as singletons, subsequently denoted by

{{i}, {j}, ...{z}}, replicates the non-cooperative or Nash equilibrium provision vector known
from games without coalition formation. It emerges if either only one player or no player

announces to join coalition S. By the same token, the grand coalition, i.e. the coalition which

comprises all players, is identical to the socially optimal provision vector, sometimes also

called the full cooperative outcome. Hence, our coalition game covers these two well-known

benchmarks, apart from partial cooperative outcomes where neither the grand coalition

nor the all singleton coalition structure forms. Moreover note that the monetary transfer

scheme which we consider is the "optimal transfer scheme" proposed by Eyckmans and

Finus (2004).3 Every coalition member receives his free-rider payo§ plus a share γi of the

total surplus σS(S), which is the di§erence between the total payo§ of coalition S and the

sum over all free-rider payo§s if a player i leaves coalition S. In other words, σS(S) is the

sum of individual coalition member’s incentive to stay in (σi(S) ≥ 0) or leave (σi(S) < 0)

coalition S, σi(S) := V ∗i (S) − V ∗i (S \ {i}), which must be positive for internal stability at
the aggregate, i.e. σS(S) =

P
i2S σi ≥ 0. Thus, the transfer scheme has some resemblance

with the Nash bargaining solution in TU-games, though the threat points are not the Nash

equilibrium payo§s but the payo§s if a player leaves coalition S. The shares γi can be

interpreted as weights, reflecting bargaining power. They matter for the actual payo§s of

individual coalition members, but do not matter for the stability (or instability) of coalition

S because stability only depends on σS(S). Henceforth, when we talk about transfers, we

mean transfers included in the class defined by the optimal transfer scheme.

Let us have now a closer look at the first stage. Note that internal and external sta-

bility defines a Nash equilibrium in terms of membership strategies. All players who have

announced to join coalition S should have no incentive to change their announcement to stay

outside S (internal stability) and all players who have announced to remain outside S should

have no incentive to announce to join S instead, given the equilibrium announcements of

all other players. Due to the fact that the singleton coalition structure can always be sup-

ported as Nash equilibrium in the membership game if all players announce to stay outside

S (as a change of the strategy by one player would make no di§erence), existence of a stable

coalition is guaranteed. We denote a coalition which is internally and externally stable and

hence stable by S∗. In the case of the monetary transfer scheme considered here, it is easy to

see that, by construction, if σS ≥ 0, then coalition S is internally stable and if σS < 0, then
neither this transfer scheme nor any other scheme could make coalition S internally stable.

Further note that internal and external stability are linked: if coalition S is not externally

3Similar notions have been considered by Fuentes-Albero and Rubio (2010), McGinty (2007) and Weikard
(2009).
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stable because player j has an incentive to join, then coalition coalition S [ {j} is internally
stable regarding player j. Loosely speaking, the transfer scheme considered here is optimal

subject to the constraint that coalitions have to be stable.4

In the following, we introduce some properties which are useful in evaluating the success

and incentive structure of coalition formation.5

Definition 3 E§ectiveness of a Coalition A coalition S is (strictly) e§ective with respect
to coalition S \ {i}, S ⊆ N , |S| ≥ 2 if Q∗(S) ≥ (>) Q∗(S \ {i}). The coalition game is
(strictly) e§ective if this holds for all S ⊆ N and all i 2 N .

Definition 4 Superadditivity, Positive Externality and Cohesiveness
(i) A coalition game is (strictly) superadditive if for all S ⊆ N , |S| ≥ 2 and all i 2 S:

X

i2S

V ∗i (S) ≥ (>)
X

i2S\{i}

V ∗i (S \ {i}) + V
∗
i (S \ {i})

(ii) A coalition game exhibits a (strict) positive externality if for all 8S ⊆ N , |S| ≥ 2 and

for all j 2 N \ S:
V ∗j (S) ≥ (>)V

∗
j (S \ {i}).

(iii) A game is (strictly) cohesive if for all S ⊂ N :
X

i2N

V ∗i ({N}) ≥ (>)
X

i2S

V ∗i (S) +
X

j2N\S

V ∗j (S)

(iv) A game is (strictly) fully cohesive if for all S ⊆ N , and |S| ≥ 2:
X

i2S

V ∗i (S) +
X

j2N\S

V ∗j (S) ≥ (>)
X

i2S\{i}

V ∗i (S \ {i}) +
X

j2N\S[{i}

V ∗j (S \ {i}).

Definition 3 allows us to evaluate provision levels of di§erent coalitions, in particular

4Every coalition S which is internally stable without transfers will also be internally stable with optimal
transfers. However, the reverse is not true. Thus, if we can show that the coalition game exhibits a property
called full cohesiveness (see Definition 4), i.e. the aggregate payo§ payo§ over all players increases with the
enlargement of a coalition, then the global payo§ of the stable coalition with the highest global payo§ among
the set of stable coalitions under an optimal transfer scheme is (weakly) higher than without transfers (or
any other transfer scheme). Hence, optimal transfers have the potential to improve upon the global payo§
of stable coalitions. For details see Eyckmans et al. (2012).

5Note that for Definitions 3 and 4 transfers do not matter. Firstly, equilibrium provision levels are not
a§ected by transfers in our setting. Secondly, we look either at the aggregate payo§ over all players or
the aggregate payo§ over all coalition members and non-signatories neither pay nor receive transfers by
assumption.
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compared to the situation when there is no cooperation. Note that full cohesiveness is the

counterpart to e§ectiveness in welfare terms.

In Definition 4 all four properties are related to each other. For instance, a coalition

game which is superadditive and exhibits positive externalities is fully cohesive and a game

which is fully cohesive is cohesive. Typically, a game with externalities is cohesive, with

the understanding that in a game with externalities the strategy of at least one player

has an impact on the payo§ of at least one other player. The reason is that the grand

coalition internalizes all externalities by assumption.6 Cohesiveness also motivates the choice

of the social optimum as a normative benchmark, and it appears to be the basic motivation

to investigate stability and outcomes of cooperative agreements. A stronger motivation is

related to full cohesiveness, as it provides a sound foundation for the search for large stable

coalitions even if the grand coalition is not stable due to large free-rider incentives. The

fact that large coalitions, including the grand coalition, may not be stable in coalition games

with the positive externality property is well-known in the literature (e.g. see the surveys by

Bloch 2003 and Yi 1997). The positive externality can be viewed as a non-excludable benefit

accruing to outsiders from cooperation. This property makes it attractive to stay outside the

coalition. This may be true despite superadditivity holds, a property which makes joining a

coalition attractive. In the context of a public good game with summation technology, stable

coalitions are typically small because with increasing coalitions, the positive externality

dominates the superadditivity e§ect (e.g. see Finus and Caparrós 2015).7 Whether this is

also the case in the context of the weakest-link technology is one of the key research question

of this paper.

We close this section with a simple observation, which is summarized in the following

lemma.

Lemma 1 Individual Rationality and Stability Let a payo§ be called individually ra-
tional if V ∗i (S) ≥ V ∗i ({{i}, {j}, ...{z}}) in the case of no transfers, respectively, V ∗Ti (S) ≥
V ∗Ti ({{i}, {j}, ...{z}}) in the case of transfers. In a coalition game which exhibits a positive
externality, a necessary condition for internal stability of coalition S is that for all i 2 S
individual rationality must hold.

Proof. Applying the definition of internal stability and positive externality, V ∗i (S) ≥
V ∗i (S \ {i} ≥ V ∗i ({{i}, {j}, ...{z}}) follows with the obvious modification for transfers.

6Cohesiveness could fail if there are diseconomies of scale from cooperation, e.g. due to transaction costs
which increase in the number of cooperating players. Our model abstracts from such complications.

7This is quite di§erent in negative externality games. In Weikard (2009) it is shown that in a coalition
game with negative externalities and superadditivity the grand coalition is the unique stable equilibrium,
using the optimal transfer scheme in the case of asymmetric payo§ functions.
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Note that in negative externality games, this conclusion could not be drawn. A player in

coalition S may be worse o§ than in the all singleton coalition structure, but still better o§

than when leaving the coalition.

4 Results of the Second Stage

4.1 Equilibrium Public Good Provision Levels

Generally speaking, the equilibrium strategy vector q∗(S) can have di§erent entries. We now

develop the arguments that all entries are the same. For coalition members, it can never be

rational to choose di§erent provision levels as any provision level larger than the smallest

provision level within the coalition would not a§ect benefits but would only increase costs.

Their optimal or "ideal" choice in isolation (Vicary 1990), or their "autarky" provision level,

is given by qAS , which follows from max
P

i2S Vi(qS) =)
P

i2S B
0

i(q
A
S ) =

P
i2S C

0

i(q
A
S ) in an

interior equilibrium which is ensured by Assumption 1. Non-signatories’ autarky provision

levels, qAj , follow from maxVj(qj) =) B
0

j(q
A
j ) = C

0

j(q
A
j ) for all j /2 S.

In order to determine the overall equilibrium, some basic considerations are su¢cient.

Neither the coalition nor the singleton players have an incentive to provide (strictly) more

than the smallest provision level over all players, Q = mini2N {qi}, as this would not a§ect
their benefits but only increase their costs. They also have no incentive to provide (strictly)

less than Q as long as Q ≤ qAj , respectively, Q ≤ qAS , as they are at the upward sloping part
of their strictly concave payo§ function. Strict concavity follows from Assumption 1 about

benefit and cost functions (which ensure existence of an equilibrium). In the case of the

coalition, we just note that the sum of strictly concave functions is strictly concave. Finally,

players can veto any provision level above their autarky level. Thus, all players match Q as

long as this is weakly smaller than their autarky level.

The replacement functions, qi = Ri(Q) (which are a variation of best reply functions,

qi = ri(q−i)), as introduced by Cornes and Hartley (2007a,b) as a convenient and elegant

way of displaying optimal responses in the case of more than two players, look like the ones
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drawn in Figure 1.8 ,9 The figure assumes a coalition with replacement function RS, and two

single players 1 and 2 with replacement functions R1 and R2, respectively. All replacement

functions start at the origin and slope up along the 45O-line up to the autarky level of a

player. At the autarky level, replacement functions have a kink and become horizontal lines,

as no player can be forced to provide more than his autarky level. Hence, public good

provision levels are strategic complements from the origin of the replacement functions up to

the point where replacement functions kink. Consequently, all points on the 45O-line up to

the lowest autarky level qualify as second stage equilibria (thick bold line). Thus, di§erent

from the summation technology, the second stage equilibrium is not unique. However, due

to the strict concavity of all payo§ functions, the smallest autarky level strictly Pareto-

dominates all provision levels which are smaller. Therefore, is seems natural to assume that

players play the Pareto-optimal equilibrium. Consequently, we henceforth assume this to be

the unique second stage equilibrium10 We relax this assumption in section 7.

[Figure 1 about here]

Proposition 1 Second Stage Equilibrium Provision Levels Suppose some coalition
S has formed in the first stage. The second stage equilibrium provision levels are given by

the interval q∗i (S) 2 [0, QA(S)], QA(S) = min{qAi , qAj , ..., qAS } and q∗i (S) = q∗j (S) = q∗S(S)

8i 6= j; i, j /2 S. Public good provision levels are strategic complements up to the minimum
autarky level QA(S). The unique Pareto-optimal second stage equilibrium among the set of

equilibria is q∗i (S) = q
∗
j (S) = q

∗
S(S) = Q

A(S) = Q∗(S) 8i 6= j; i, j /2 S.

Proof. Follows from the discussion above, including footnote 10.

8Exploiting the aggregative structure of Bergstrom et al.’s (1986) non-cooperative public good model with
summation technology, and following the discussion in Bergstrom et al. (1992) and Fraser (1992), Corners
and Hartley (2007a) greatly simplify the proof of existence and uniqueness for the summation technology
by exploiting the replacement function. Essentially, their proof boils down to a graphical argument in the
qi-Q-space as drawn in Figure 1, though replacement functions would look very di§erent. If the individual
replacement functions start at a positive level on the abscissa, are continuous and downward sloping over the
entire strategy space, the aggregate replacement function (which is the vertical aggregation of the individual
replacement functions for the summation technology) will have the same properties and it will intersect with
the 45o-line, only once, and hence is the location of the unique Nash equilibrium.

9Using the technique of the replacement function, Corners and Hartley (2007b) analyze Nash equilibria
for the weakest-link public good technology, showing that any non-negative level of the public good which
does not exceed any individually preferred level is an equilibrium (and thus the game has a continuum of
Pareto ranked equilibria). As their argument only requires convex preferences, it also holds in our coalition
game. We only need to interpret coalition S as a single player for whom the aggregate preferences (as the
sum of individual members’ preferences) are convex. Note that reaction functions would also be upward
sloping.
10The discussion for selecting the Pareto-optimal equilibrium would be very similar as discussed in

Hirschleifer (1983) and Vicary (1990) in the context of Nash equilibria without coalition formation.
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Assumption 2 Among the set of second stage equilibria, the unique Pareto-optimal
equilibrium is played in the second stage.

It is evident that the summation technology would have very di§erent properties. Re-

placement and reactions functions would be downward sloping and hence strategies are

strategic substitutes. Moreover, there is no need to invoke Pareto-dominance to select equi-

libria as the equilibrium would be unique.

A useful result for the following analysis of the weakest-link technology is summarized in

the following lemma.

Lemma 2 Coalition Formation and Autarky Provision Level Consider a coalition
S with autarky level qAS and a player i with autarky level q

A
i . If coalition S and player i

merge, such that S [ {i} forms, then for the autarky level of the enlarged coalition, qAS[{i},
max{qAS , qAi } ≥ qAS[{i} ≥ min{q

A
S , q

A
i } holds, with strict inequalities if qAS 6= qAi .

Proof. The maximum of the sum of two strictly concave payo§ functions is between the

maxima of the two individual payo§ functions.

Lemma 2 is illustrated in Figure 1 with the replacement function of the enlarged coalition

denoted by RS[{1}, assuming player 1 merges with coalition S. Note that merging of several

players can be derived as a sequence of single accessions to coalition S.

4.2 Properties of the Public Good Coalition Game

For many of the subsequent proofs but also in order to understand generally how coalition

formation impacts on equilibrium provision levels, the following lemma is useful.

Lemma 3 Coalition Formation and E§ectiveness Coalition formation in the public
good coalition game with the weakest-link technology is e§ective.

Proof. Case 1: Suppose that Q∗(S) is the autarky level of a player j who does not belong to
S [ {i}. Hence, qAj ≤ qAi , qAS and qAj ≤ qAS[{i} due to Lemma 2 so that Q

∗(S) = Q∗(S [ {i}).
Case 2: Suppose that Q∗(S) = qAi initially and hence q

A
j ≥ Q∗(S) for all j /2 S. Moreover,

qAi ≤ qAS and hence q
A
i ≤ qAS[{i} due to Lemma 2. Thus, regardless whether Q

∗(S [ {i}) is
equal to the autarky level of the enlarged coalition, qAS[{i}, or equal to the autarky level of

some other non-signatory j, qAj ≥ qAi , Q∗(S [ {i}) ≥ Q∗(S) must be true. Case 3: Suppose
that Q∗(S) = qAS before the enlargement, then the same argument applies as in Case 2.

Lemma 3 is useful in that it tells us that the public good provision level never decreases

through a merger but may increase. It will strictly increase if the enlarged coalition contains
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the (strictly) weakest-link player (either the single player who joins the coalition or the

original coalition) whose autarky level before the merger was strictly below that of any other

player. Because not all expansions of a coalition are strictly e§ective, the following properties

also only hold generally in its weak form.

Proposition 2 Positive Externality, Superadditivity and Full Cohesiveness The
public good coalition game with the weakest-link technology exhibits the properties positive

externality, superadditivity and full cohesiveness.

Proof. Positive Externality: From Lemma 3 we know that Q∗(S [ {i}) ≥ Q∗(S). Let

j /2 S[{i}. Player j can veto any provision level above his autarky level if qAj ≤ Q∗(S[{i}),
and if qAj > Q

∗(S [ {i}) he must be at the upward sloping part of his strictly concave payo§
function. Hence, V ∗j (S [ {i}) ≥ V ∗j (S) must be true. Superadditivity: If the expansion from
S to S [ {i} is not strictly e§ective, weak superadditivity holds. If it is strictly e§ective, i.e.
Q∗(S[{i}) > Q∗(S), then either i or S must determine Q∗(S) before the merger. Then after
the merger qAS[{i}(S [ {i}) > Q

∗(S) from Lemma 2. Since the enlarged coalition S [ {i} can
veto any provision level above qAS[{i}(S[{i}), moving from level Q

∗(S) towards Q∗(S[{i}) ≤
qAS[{i}(S [ {i}) must imply a move along the upward sloping part of the aggregate welfare
function of the enlarged coalition and hence the enlarged coalition as a whole must have

strictly gained. Full Cohesiveness: Positivity externality and superadditivity together are

su¢cient conditions for full cohesiveness.

Lemma 3 and Proposition 2 are interesting in themselves but can be even more ap-

preciated when compared with the summation technology. For the summation technology,

e§ectiveness (with Q =
P

j2N qj) and the positive externality property would also hold,

though for a very di§erent reason. Even though an expansion of the coalition also implied

that signatories increase their aggregate provision level, non-signatories would not increase

but decrease their provision level.11 Because slopes of the reaction functions would be larger

than −1, the overall provision level (strictly) increased. In other words, there would be
leakage but less than 100%. The positive externality would not hold because outsiders get

closer to their autarky provision level but because they take a free-ride. Non-signatories’

benefits increasd through a higher total provision but their costs decreased as they have

would reduced their individual contribution (see previous footnote).

In contrast, superadditivity could not be established at a general level for the summation

technology, would require very restrictive assumptions to establish it and may in fact fail for

typical examples. This is particularly true if the slopes of reaction functions are steep and

11For the special case of B
0

i = 0, the provision level of non-signatories would remain constant and hence also
their costs. Benefits would strictly increase through a merger as the total provision level strictly increases.
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coalitions are small so that free-riding is particularly pronounced. It is for this reason that

is di¢cult to establish generally full cohesiveness for the summation technology, at least we

are not aware of any proof which is not based on the combination of superadditivity and

positive externalities.12

Considering all properties in Proposition 2 together with the view of predicting stable

coalitions in the first stage, general conclusions are not straightforward. On the one hand,

also for the weakest-link technology the coalition game exhibits positive externalities, which

following the literature predicts small coalitions. On the other hand, superadditivity always

holds and strategies are strategic complements and not substitutes which may provide some

indication that agreements may be more successful for the weakest-link than for the summa-

tion technology.13 At least one may hope that more analytical results can be obtained for

the first stage, di§erent from the summation technology for which the analysis mainly relies

on simulations.

5 Results of the First Stage

5.1 Symmetric Players

In order to analyze stability of coalitions, it is informative to start with the assumption of

symmetric players which is widespread in the literature due to the complexity of coalition

formation (see e.g. Bloch 2003 and Yi 1997 for overviews on this topic). Symmetry means

that all players have the same payo§ function. This assumption, which is sometimes also

called ex-ante symmetry because, depending whether players are coalition members or non-

members, they may be ex-post asymmetric, i.e. have di§erent equilibrium payo§s. We follow

the mainstream assumption and ignore transfer payments for ex-ante symmetric players.14

12It is somehow disturbing that the non-cooperative coalition formation literature analyzes ways to estab-
lish large stable coalitions without clarifying whether full cohesiveness holds. This shortcoming is valid for
positive and negative externality games.
13Note that convexity does not hold for the public good coalition game, neither for the summation technol-

ogy nor for the weakest-link technology. Convexity is a stronger property than superadditivity and implies
that the gains from cooperation increase at an increasing rate with membership. Hence, convexity facil-
itates cooperation, an assumption frequently made in cooperative coalition theory, though, obviously, not
appropriate in our context.
14For most economic problems and ex-ante symmetric players, in equilibrium, all players belonging to

the group of signatories and all players belonging to the group of non-signatories chose the same economic
strategies in the second stage (though signatories and non-signatories choose typically di§erent strategies).
Thus, all signatories receive the same payo§, and the same is true among the group of non-signatories.
Consequently, transfers among signatories would create an asymmetry, which, though in theory possible,
would be di¢cult to justify on economic grounds.
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Proposition 3 Symmetry and Stable Coalitions Assume payo§ function (1) to be the
same for all players, i.e. all players are ex-ante symmetric, then all players (signatories

and non-signatories) are ex-post symmetric if coalition S forms, V ∗i (S) = V ∗j (S) for all

i 6= j. Moreover, q∗(S) = q∗(S#) for all possible coalitions S 6= S#, S, S# ⊆ N and hence

V ∗i (S) = V
∗
i (S

#) for all i 2 N . Therefore, all coalitions are Pareto-optimal, socially optimal
and stable, and there is no need for cooperation.

Proof. Follows directly from Lemma 2 and applying the conditions of internal and external
stability.

Admittedly, Proposition 3 is less interesting when relating it to the literature on Nash

equilibria cited in the introduction for the weakest-link technology which already concludes

that there is not need for coordination for symmetric players. It is more interesting as

a benchmark for coalition formation and when relating it to the summation technology:

there would be a need for cooperation despite all players ex-ante symmetric, though stable

coalitions tend to be small. Thus, in order to render the analysis interesting for the weakest-

link technology, we henceforth consider asymmetric players.

5.2 Asymmetric Players

In order to operationalize and to make the concept of ex-ante asymmetric players interesting,

we assume that autarky levels can be ranked as follows: qA1 ≤ qA2 ≤ ... ≤ qAN with at least one

inequality sign being strict.15 Henceforth, when we talk about ex-ante asymmetry, we mean

this definition, without mentioning this explicitly anymore. We start with the assumption

of no transfers

Proposition 4 Asymmetry, No Transfers and Instability of E§ective Coalitions
Assume ex-ante asymmetric players and no transfers. a) All coalitions are Pareto-optimal,

i.e. moving from a coalition S ⊆ N to any coalition S# ⊆ N , S 6= S#, it is not possible

to strictly increase the payo§ of at least one player without decreasing the payo§ of at least

one other player. b) All strictly e§ective coalitions with respect to the all singleton coalition

structure are not stable and all non-strictly e§ective coalitions are stable.

Proof. a) Consider a coalition S withQ∗(S) and any change through a change of membership
of a group of players which leads to coalition S# with Q∗(S#). Case 1: If Q∗(S) = Q∗(S#),

Vi(S) = Vi(S
#). Case 2: Suppose Q∗(S#) > Q∗(S) which requires that player 1 is a member

of S#. Hence, qA1 < Q
∗(S) < Q∗(S#) must hold, and at least player 1 must be worse o§ if

15Hence, we rule out the possibility (though unlikely) that all players have di§erent payo§ functions but
the same autarky level.
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coalition S# forms. Case 3: Suppose Q∗(S#) < Q∗(S) which implies that there is a player

j with qAj > Q
∗(S) who must be worse o§ if S# forms, regardless whether he is a member

in any of these coalitions. b) Firstly, a strictly e§ective coalition requires the membership

of the player with the lowest autarky level who will be strictly worse o§ than in the all

singleton coalition structure (Case 2 in a) above) and instability follows from Lemma 1.

Secondly, leaving a not strictly e§ective coalition with respect to no cooperation means that

Q∗(S) = Q∗(S \ {i}) and hence internal stability follows trivially. External stability follows
because either joining S such that S [ {j} forms is ine§ective with respect to S or if it is
strictly e§ective, then qAj < Q

∗(S) must be true and hence j is worse o§ in S [ {j} than as
a single player, as just explained above. Hence, S is externally stable.

Interestingly, even though all coalition structures are Pareto-optimal, not a single coali-

tion is stable in the absence of transfers which strictly improves upon the non-cooperative

equilibrium. The reason is that a strictly e§ective coalition requires membership of the

players with the smallest autarky level who are worse o§ than when staying outside and

individual rationality is a necessary condition for internal stability in a positive external-

ity game. This is also one of the reason why all coalitions are Pareto-optimal (though not

socially optimal). Any move from a coalition S to some other coalition S# which changes

the provision level means either a lower payo§ to those players with the smallest autarky

level if the provision level increases or to those with the largest autarky provision level if the

provision level decreases. Note that for the summation technology results would be more

ambiguous. The set of Pareto-optimal coalitions would normally only be a subset of all coali-

tions. In particular, the all singleton coalition structure would usually not be Pareto-optimal.

Moreover, depending on the degree of asymmetry and the particular payo§ function, no, one

or some coalitions could be stable.

Given this unambiguous negative result for the weakest-link technology, we consider

transfers (always in the form of the optimal transfer scheme) in the subsequent analysis.

At the most basic level, we can ask the question: will transfers strictly improve upon no

transfers? The answer is a¢rmative.

Proposition 5 Asymmetry, Transfers and Existence of a Strictly E§ective Stable
Coalition Assume ex-ante asymmetric players and transfers. Then there exists at least one
stable coalition S which Pareto-dominates the all singleton coalition structure with a strictly

higher provision level.

Proof. Because of asymmetry, we have qA1 < q
A
S < q

A
n , and hence a strictly e§ective coalition

S exists. A strictly e§ective coalition S compared to the all singleton coalition structure must

include all players i for whom qAi = min{qA1 , qA2 , ..., qAn } is true and a player j with qAj > qAi
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such that qAi < Q
∗(S) ≤ qAS from Lemma 2. Because it is strictly e§ective, qAk ≥ Q∗(S) > qAi ,

all k /2 S must be strictly better o§ (strict positive externality holds). Let there be only one
player j in S. Hence, for all i 2 S, S \ {i} = {{i}, {j}, ...{z}} (the all singletons coalition
structure) regardless which coalition member leaves. Therefore, because qAS ≥ Q∗(S) > qAi ,
σS(S) :=

P
i2S(V

∗
i (S)− V ∗i (S \ {i})) > 0 follows from the strict concavity of the aggregate

payo§ function of S and hence V ∗Ti (S) = V ∗i (S \ {i}) + γiσS(S) > V ∗i ({{i}, {j}, ...{z}}).
Hence, S constitutes also a strict Pareto-improvement for all players in S compared to the

all singleton coalition structure and S is internally stable. Now suppose S is externally

stable and we are done. If S is not externally stable with respect to the accession of an

outsider l (which requires qAl > Q∗(S)), then coalition S [ {l} is internally stable. If it is
also externally stable we are done, otherwise the same argument is repeated, noting that

eventually one enlarged coalition will be externally stable because the grand coalition is

externally stable by definition. Due to the strict positive externality, and Lemma 1, the

eventually stable coalition must Pareto-dominate the all singleton coalition structure.

Note that a general statement as in Proposition 5 would not be possible for the sum-

mation technology. Establishing existence of a non-trivial coalition with transfers requires

superadditivity but this property does not hold generally as pointed out above. However,

predicting which specific coalitions are stable for the weakest-link technology is also not

straightforward at this level of generality, though it turns out that our results are much

more general than those obtained for the summation technology.16 In the next section, we

analyze how the nature of asymmetry a§ects stability. We first lay out the basic analysis for

determining stable coalitions and then look into the details.

6 Stable Coalitions and the Nature of Asymmetry

6.1 General Considerations

In the context of the provision of a public good, it seems natural to worry more about

players leaving a coalition than joining it and hence one is mainly concerned about internal

stability. This is even more true because if coalition S is internally stable with transfers,

but not externally stable, then a coalition S [ {j} is internally stable, with a provision
level and a global payo§ strictly higher than before.17 Hence, we focus on this dimension of

16Analytical results for the cartel formation game have only been obtained in Barrett (2001), Fuentes-
Albero and Rubio (2010) and Pavlova, de Zeeuw (2013), but they assume a particular payo§ function and
only two types of players, severely limiting the type of asymmetry.
17External instability requires Q∗(S) < Q∗(S [ {j}) and hence the move from S to S [ {j} would be

strictly fully cohesive by Proposition 2.
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stability. Moreover, we consider only strictly e§ective coalitions compared to the all singleton

coalition structure because all other coalitions are internally stable even without transfers

as stated in Proposition 4. Because of strict e§ectiveness, all players with qAi = qA1 must

be members of S, qA1 ≤ qA2 ≤ ... ≤ qAn with at least one inequality being strict. In the

presence of transfers, we know from Section 2 that internal stability of coalition S requires

that σS(S) =
P

i2S σi(S) ≥ 0, with σi(S) = V
∗
i (S)− V ∗i (S \ {i}).

In principle, we need to distinguish only two cases which are illustrated in Figure 2.

In case 1, coalition S determines the equilibrium provision level and hence qAS = Q∗(S).

Consequently, qAm > q
A
S for all m /2 S. S may be a subcoalition or the grand coalition. In

case 2, an outsider m determines the equilibrium provision, S ⊂ N , and hence qAm = Q∗(S).
Because S is assumed to be strictly e§ective compared to the all singleton coalition structure,

we must have qA1 ≤ qAi < qAm < qAS (with all players i with qAi < qAm being members of S).
[Figure 2 about here]

For both cases (which are identical if qAm = q
A
S ), we distinguish three groups of players in

coalition S. "Weak players" i 2 S1 for which qAi = Q∗(S \ {i}) < Q∗(S) < qAS\{i} after they
leave coalition S, "strong players" j 2 S2 for which qAS\{j) = Q

∗(S \ {j}) < Q∗(S) < qAj is

true and "neutral" players k 2 S3 for which Q∗(S\{k}) = Q∗(S) ≤ qAk holds.18 Weak players
have an autarky provision level below the equilibrium provision level when S forms and hence

gain from leaving coalition S, i.e. σi(S) = V ∗i (S)− V ∗i (S \ {i}) < 0. For strong players this
is reversed; they have an autarky level above Q∗(S) and if they leave, the new equilibrium

provision level is lower and hence they lose from leaving, σj(S) = V ∗j (S)− V ∗j (S \ {j}) > 0.
For neutral players σk(S) = V ∗k (S)−V ∗k (S \ {k}) = 0. Their autarky provision level is equal
to Q∗(S) = qAS in case 1 and larger than q

A
S > Q

∗(S) = qAm in case 2 but not large enough

(qAk ≤ eq in Figure 2) so when they leave coalition S, qAS\k ≥ Q∗(S) = Q∗(S \{k}) = qAm. That
is, neutral players do not a§ect the provision level after they leave.19 Clearly, S = S1[S2[S3
noting that the set of players in di§erent groups do not coincide in case 1 and 2, as it is

evident from Figure 2. For a given distribution of autarky levels in coalition S, S1 and S2
will be smaller and S3 will be larger in case 2 than in case 1.

We define eS = S1 [ S2 because only these two groups of players a§ect stability. Thus,
18We use these terms for easy reference, having in mind a weak, strong or neutral interest regarding the

level of public good provision.
19Formally, we have: Case 1 with qAm > qAS for all m /2 S: S1 =

n
i | i 2 S ^ qA1 ≤ qAi < qAS < q

A
S\{i}

o
,

S2 =
n
j 2 S | qAS\{j} < q

A
S < q

A
j

o
and S3 =

n
k 2 S | qAS\{k} = q

A
k = q

A
S

o
; Case 2 with qAm < qAS for some

m /2 S, S ⊂ N : S1 =
n
i | i 2 S ^ qA1 ≤ qAi < qAm < qAS < q

A
S\{i}

o
, S2 =

n
j 2 S | qAS\{j} < q

A
m < q

A
S < q

A
j

o

and S3 =
n
k 2 S | qAm ≤ qAS\{k}

o
.
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coalition S ⊆ N is internally stable if and only if:

σS(S) =
X

j2S̃\S1

[
Vj(q

A
y )− Vj(q

A
S\{j})

]
−
X

i2S1

[
Vi
(
qAi
)
− Vi(qAy )

]
≥ 0 (2)

with y = S in case 1 and y = m in case 2. Condition 2 stresses that what strong players

gain by staying inside the coalition (first term) must be larger than what weak players lose

by staying inside the coalition (second term).

When is this condition likely to hold? Consider first the first term in (2) above. Intu-

itively, for the S̃ \ S1 group of strong players, a large di§erence between qAj and qAy implies a
large drop from qAy to q

A
S\{j} when they leave the coalition. Hence, q

A
y and q

A
S\{j} are at the

steep part of the upward sloping part of a strong players’ strictly concave payo§ function

Vj. In other words, the di§erence Vj(qAS ) − Vj(qAS\{j}) is large, i.e. the gain from remaining

in the coalition is large if the distance between qAy and q
A
j is large. For the S1 group of

weak players, we require just the opposite for condition 2 to hold: the closer qAi to q
A
y , the

smaller the second term in (2) and hence the smaller the gain from leaving coalition S. Thus,

roughly speaking, we are looking for a positively skewed distribution of autarky levels of the

players in coalition S with reference to qAy . The weak players should have an autarky level

close to the autarky level of the coalition in case 1 and close to the autarky level of outsider

m in case 2. In contrast, the strong players should have an autarky level well above the

coalitional autarky level in case 1 and well above the autarky level of player m in case 2. In

the next subsection, we have a closer look how this relates to the underlying parameters and

structure of the benefit and cost functions.

6.2 Asymmetry and Stability

In this section, we want to substantiate the intuition provided above about distributions of

autarky levels of coalition members which are conducive to internal stability of a coalition.

Analytically, we cannot simply consider di§erent distributions of autarky levels as they may

be derived from di§erent payo§ functions. Therefore, we need to construct a framework

which allows to relate autarky levels to the parameters of the payo§ functions. Hence, we

consider a payo§ function which has slightly more structure than our general payo§ function

(1), but which is still far more general than what is typically considered in the literature

on non-cooperative coalition formation in general and in particular in the context of public

good provision with a summation technology.20 We use the notation vi(Q, qi) to indicate the

20All specifications used in the context of the summation technology are a special case of payo§ function (3)
assuming Q =

P
i2N qi instead of Q = mini2N {qi} For instance, the "quadratic-quadratic" payo§ function,

which has been extensively used for the analysis of international environmental agreements, is obtained by
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di§erence to our general payo§ function (1) which was denoted by Vi(Q, qi):

vi(Q, qi) = biB(Q)− ciC(qi) (3)

Q = min
i2N

{qi}

where the properties of B and C are those summarized in Assumption 1. That is, we assume

that all players share a common function B and C but di§er in the scalars bi and ci. In

addition, in order to simplify the subsequent analysis, we assume C 000 ≥ 0 and B000 ≤ 0 (or,
if B000 > 0, then B000 is su¢ciently small).21

The following lemma shows the key advantage of payo§ function (3): it allows us to

characterize the autarky provision of any trivial or non-trivial coalition S, based on a single

parameter.

Lemma 4 Autarky Provision Level and Benefit and Cost Parameters Consider
payo§ function (3). The autarchy abatement level of a coalition S is given by qAS = h (θS) ,

where h is a strictly increasing and strictly concave function implicitly defined by C0(q)
B0(q)

= θS,

with θS =
P
i2S biP
i2S ci

.

Proof: See Appendix B.1.
That is, players can be ranked based on their parameter θi through the function h. Players

with higher parameters θi will have higher autarky levels. We say a player k is "stronger"

than a player l if θk > θl and "weaker" if the opposite relation holds. According to our

general analysis above, in case 1, when coalition S determines the equilibrium provision

level, i.e. Q∗(S) = qAS , weak players are coalition members for which θi < θS holds, strong

players for which θj > θS holds and neutral players for which θl = θS holds. In case 2,

when an outsider player m determines the equilibrium provision level, i.e. Q∗(S) = qAm, weak

players are coalition members for which θi < θm holds, strong players for which θS\{j) < θm
holds and neutral players for which θm ≤ θj, θS\{j) holds. Accordingly, condition (2) can be

setting B(Q) = a1(Q)− a2
2 (Q)

2 and C(qi) = a3qi+ a4
2 q

2
i , with aj ≥ 0 for j = {1, 2, 3, 4} . For example, Barrett

(1994) and Courtois and Haeringer (2012) assume symmtric players and a particular case of this functional
form. In order to replicate their payo§ function, we would need to set a1 = a, a2 = 1, a3 = 0, a4 = 1, bi = b
8i 2 N, ci = c 8 i 2 N . McGinty (2007) analyzes, using simulations, a game with asymmetric players with
similar functions. In order to retrieve his function, we would need to set aj for j = {1, 2, 3, 4} as in Barrett’s
game but bi = bαi and ci = ci. For other payo§ functions, including the linear benefit function considered
for instance in Ray and Vohra (2001) or Finus and Maus (2008) a similar link could be established. This is
also true for Rubio and Ulph (2006) and Dimantoudi and Sartzetakis (2006) although they analyze the dual
problem of an emission game.
21If B000 > 0, a su¢cient condition for the subsequent results to hold is B000 < −2B00C 00/C 0. See Appendix

B.1.
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written as follows:

σS(S,Θ) =
X

j2S2

[
vj(θy)− vj

(
θS\{j)

)]
−
X

i2S1

[vi (θi)− vi(θy)] (4)

where θy = θS in case 1 and θy = θm in case 2, with σS(S,Θ) indicating that internal stability

of coalition S depends on the distribution of θi-values of players in S, Θ. We now ask the

question how σS(S,Θ) changes if we change the θi-values of some players in S, assuming the

same θS, but considering di§erent distributions Θ.22 To simplify the exposition, we focus

on the case where all players in S share a common ci = c and the changes a§ect only the

parameters bi. However, all the results shown in this section hold if coalitions members share

a common bi = b and marginal changes a§ect the parameters ci (in the opposite direction;

bi+ϵ corresponds to ci−ϵ) instead, and only minor adjustments are needed to accommodate
the case where players di§er in both parameters. We detail these adjustments in footnote

23.23

Proposition 6 Asymmetry and Stability Consider payo§ function (3), with ci = c 8
i 2 S, a strictly e§ective coalition S with respect to the all singleton coalition structure and
two distributions Θ and Θ̃ of players θi-values in S, where Θ̃ is derived from Θ by a marginal

change ϵ of two bi-values of players in S, such that bk − ϵ and bl+ ϵ, implying θk−ϵ < θk and
θl+ϵ > θl.Then σS(S, Θ̃) ≥ σS(S,Θ) if:

(i) θl < θk ≤ θy;
(ii) θy < θk ≤ θl;
(iii) θk ≤ θy < θl and θ{k−ϵ} ≥ θS\{l+ϵ}.

Proof: See Appendix B.2.
All three conditions are illustrated in Figure 3, noting that θS remains the same through

the marginal changes.

In condition (i), among the set of players with θ-values below θy, the θ-value of the weaker

player l becomes larger at the expenses of the θ-value of the stronger player k. The set of

players involved in marginal changes belongs to the group of weak players S1. At the margin,

it includes the possibility that player k is a neutral player before the marginal change.

22We could conduct a similar comparative analysis of autarky and equilibrium provision levels as a function
of a uniform change of all benefit or cost parameters as in Cornes and Hartley (2007b). As this does not
a§ect stability, we consider only non-uniform changes below.
23Dropping the assumption ci = c 8 i 2 S, respectively, bi = b 8 i 2 S , all conditions in Proposition 6

remain unchanged except condition (ii) for which the additional condition v0l (θ)|θS\l ≥ v0k (θ)|θS\k would be
needed. The subsequent Corollary 1 and 2 also continue to hold.
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In condition (ii), among the set of players with θ-values above θy, the θ−value of a
(weakly) stronger player l is increased at the expense of the θ-value of a (weakly) weaker

player k. In case 1 where the coalition determines the equilibrium provision level, the set

of players involved in marginal changes of θ-values is the set of strong players S2 (see also

Figure 2). In case 2 where an outsider determines the equilibrium provision level, the set of

involved players could be strong players in S2 but also neutral players S3 (see also Figure 2).

In condition (iii) the marginal changes a§ect one player with a θ-value above and one

below θy. The marginal changes involve an increase of the θ-value of a stronger player

l at the expenses of the θ-value of a weaker player k. The weaker player will typically

belong to the group of weak players S1, but could also belong to S3 at the margin in the

special case when θk = θy. The stronger player l will always belong to S2 because otherwise

θ{k−ϵ} ≥ θS\{l+ϵ} will be violated (see Appendix B.2 for details). Important is that the θ-

value of one player involved in the change is relatively strong within its group because this

ensures θ{k−ϵ} > θS\{l+ϵ}, where θS\{l+ϵ} is the θ-value of coalition S if player l leaves coalition

S under distribution Θ̃.

Note that the weak inequality sign in Proposition 6 in terms of stability only applies to

the particular case where both players k and l belong to the set of neutral players S3 (which

is only possible in case 2 in condition (ii)) as all other changes imply σS(S, Θ̃) > σS(S,Θ)

(see Appendix B.2. for details).

[Figure 3 about here]
In the following, we consider di§erent distributions to illustrate Proposition 6. For sim-

plicity, we assume that coalition S determines the equilibrium provision level (case 1). The

formal definitions of these distributions are given in Definition 5 and are illustrated in Figure

4.

[Figure 4 about here]

Definition 5 Distributions Consider a coalition S with Q∗(S) = qAS and the following

distributions of θ-values (with ci = c 8 i 2 S), generating changes of θi-values through a
marginal change of bi-values as explained in Proposition 6, denoting the cardinality of S by

s with s being su¢ciently large and let ∆ > 0 be the result of a sequence of changes ϵ in

Proposition 6 with ∆ < θS.

Sequence 1:

(a) Asymmetric distribution ΘΛ with θi = θS −∆ and for all j 6= i, θj = θS + ∆
s−1 .

(b) Symmetric distribution ΘΨ with θi = θS −∆ , θj = θS +∆ and for all k 6= i, j, θk = θS,
generated from ΘΛ by applying a sequence of changes in Proposition 6 using condition (ii).

(c) Asymmetric distribution ΘΩ with θi = θS − ∆
s−1 for all i 6= j, θj = θS +∆ , generated
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from ΘΨ by applying a sequence of changes in Proposition 6 using condition (i).

Sequence 2:

(a) Uniform distribution ΘΓ with θi = θS −
!
(s−1)
2
+ 1− i

"
∆ , i = 1, ..., s such that there

are (s−1)
2
players in S1 and

(s−1)
2
players in S2 and one player in S3, assuming s to be an odd

number.

(b) Asymmetric distribution ΘΦ with θi = θS − ∆
4
(s+ 1) for all i = 1, ..., (s−1)

2
, θk = θS for

player k = (s−1)
2
+ 1 and θj = θS −

!
(s−1)
2
+ 1− j

"
∆ , j = (s−1)

2
+ 2, ..., s for all j 6= i, k,

generated from ΘΓ by applying a sequence of changes in Proposition 6 using condition (i).

(c) Asymmetric distribution ΘΥ with θi = θS − ∆
4
(s + 1) for all i = 1, ..., (s−1)

2
, θk = θS

for all players k = (s−1)
2
+ 1, ..., s− 1 and θj = θS +∆( s−12 ) +∆

(s−1)(s−3)
8

= θS +∆
(s2−1)
8

for

player j = s, generated from ΘΦ by applying a sequence of changes in Proposition 6 using

condition (ii).

(d) Asymmetric distribution ΘΞ with θi = θS − ∆
8
(s + 1) for all i = 1, ..., s − 1 and

θj = θS +∆
(s2−1)
8

for player j = s , generated from ΘΥ by applying a sequence of changes

in Proposition 6 using condition (i).

Corollary 1 Distributions and Stability For the distributions defined in Definition 5,
the following relations hold:

Sequence 1: σS(S,Θ
Λ) < σS(S,Θ

Ψ) < σS(S,Θ
Ω); σS(S,ΘΩ) > 0.

Sequence 2: σS(S,Θ
Γ) < σS(S,Θ

Φ) < σS(S,Θ
Υ) < σS(S,Θ

Ξ); σS(S,ΘΞ) > 0.

Proof. Follows directly from Proposition 6. σS(S,ΘΩ) > 0 and σS(S,ΘΞ) > 0 can be proved
along the lines of the proof in Proposition 5.

In sequence 1, we are moving from a (very) negatively skewed distribution ΘΛ to a

symmetric distribution ΘΨ finally ending up in a (very) positively skewed distribution ΘΩ.

Along this sequence, the value of σS(S) increases. Whether σS(S) is positive or negative

cannot be said at this level of generality, except that we know that finally σS(S,ΘΩ) >

0. Since distribution ΘΩ (like ΘΞ) can always be generated from any distribution, there

always exists an asymmetric distribution for which the grand coalition is stable. The reason

is simple. For this type of distribution, regardless which player leaves coalition S, the

subsequent equilibrium provision will be the provision level in the Nash equilibrium and

because there is a strictly positive aggregate gain for coalition members in S from moving

from {{i}, {j}, ..., {n}} to any non-trivial coalition S, σS(S) > 0 must be true.
In sequence 2, we move from a symmetric, in fact uniform distribution ΘΓ to a positively

skewed distribution ΘΦ, imposing further changes, generating distribution ΘΥ and ΘΞ, in-
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creasing σS(S) on this way, noting that ΘΞ is a very positively skewed distribution. It is

clear that a similar sequence could have been generated starting from a normal distribution.

Both sequences suggest that asymmetric distributions of autarky levels which are pos-

itively skewed may be more conducive to the stability of coalitions than rather symmetric

distributions if the asymmetric gains from cooperation can be balanced in an optimal way

through a transfer scheme. However, a relative symmetric distribution is more conducive

to stability than a negatively skewed distribution of autarky levels. Hence, asymmetry of

interests as such is not an obstacle to successful cooperation but can be actually an asset

depending on the type of asymmetry. It is conducive to stability if there is no outlier at the

lower end (condition (i) in Proposition 6). At the upper end, this is reversed. Instead of

having many strong players it is better for stability to have one outlier at the top (condition

(ii) in Proposition 6). If there is only one strong player left, he would pay transfers to all

other weak players.

Essentially, what we did in Corollary 1 is to relate distributions to stability so that

Proposition 6 is less abstract. We note that there is no unique measure to compare di§erent

distributions. Corollary 1 suggests that skewness could be a good measure. This is indeed

the case for most distributions even though we need to mention one caveat: there is not

always a one to one correspondence between the marginal changes listed in Proposition

6 and skewness. In other words, not all marginal changes which increase σS(S) increase

skewness (though most do) as we detail in Appendix B.3, using the Fisher-Pearson coe¢cient

of skewness.

It is also important to point out that di§erent from the summation technology where it

is usually easier to obtain stability for smaller than for larger coalitions, this may not be true

for the weakest-link technology. As Proposition 6 highlights, stability only depends on the

distribution of autarky levels of players in coalition S, i.e. the θi-values. By adding a player

outside coalition S to S, a new distribution is generated for which σs < σs[{l} is possible. 24

6.3 Asymmetry and Welfare

From the previous subsection we know how distributions of autarky levels relate to stability.

Now we want to relate this to the global gains from cooperation. To this end, we define the

global payo§ of a given distribution Θ of players θi values as W =
P

i2N vi(Θ). We further

define the absolute (respectively, relative) gain from forming coalition S by ∆W (Θ) :=

W S −WNa (respectively, ∆W (Θ) := WS

WNa ), with superscript Na for Nash equilibrium and

24Consider a game with four players and the following payo§ function vi = bi
(
aQ− 1

2Q
2
)
− c
2q
2
i with a = 10,

c = 1 and bi = {4, 5, 5, 10} for i = 1, 2, 3, 4. Then σS({1, 2, 3, 4}) = 8410
6069 > 0 whereas σS({1, 2, 3}, {4}) =

− 120
2057 < 0 .
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S for the coalition. These definitions cover the case where S is the grand coalition and

therefore the social optimum.

Proposition 7 Asymmetry and Welfare Gains Consider payo§ function (3), a strictly
e§ective coalition S with respect to the all singleton coalition structure and two distributions

Θ and Θ̃ as defined in Proposition 6. Then, ∆W S(Θ) > ∆W S(Θ̃) if

θmin(Θ) = min{θ1, ..., θn} < θmin(Θ̃) = min{eθ1, ...,eθn}

Proof. Using payo§ function (3), W =
P

i2N vi =
P

i2N biB(q) −
P

i2N ciC(q) from which

it is evident that the marginal changes of bi (or ci-values) described in Proposition 6 do not

change W . We know that W is strictly concave in q with W 0(qAN) = 0 and q
A
s = h(θS) for all

S ⊆ N from Lemma 4. By construction, marginal changes do not a§ect θS and θm but may

a§ect the smallest autarky level θmin Therefore, WNa(Θ) < WNa(Θ̃) and W S(Θ) = W S(Θ̃).

Thus, the smaller the smallest autarky level, the smaller the provision level in the Nash

equilibrium and hence the larger are the gains from cooperation, keeping the socially optimal

and equilibrium provision level if coalition S forms constant as assumed by the marginal

changes in Proposition 6 and 7. Thus, by using the concept of a sequence of marginal

changes of bi-values (and/or ci-values), as introduced in Proposition 6, and also assumed in

Proposition 7, very di§erent distributions can be compared in terms of their global payo§

implications. Comparing again our distributions defined in Definition 5, we find that relations

are (almost) reversed.

Corollary 2 Distributions and Welfare Gains For the Distributions defined in Defini-
tion 5, the following relations hold:

Sequence 1 : ∆W (S,ΘΛ) = ∆W (S,ΘΨ) > ∆W (S,ΘΩ).

Sequence 2 : ∆W (S,ΘΓ) > ∆W (S,ΘΦ) = ∆W (S,ΘΥ) > ∆W (S,ΘΞ).

A comparison of Corollary 1 and 2 reveals: distributions which favour stability maybe

associated with a lower global gain from cooperation and vice versa. Thus, the "paradox of

cooperation", a term coined by Barrett (1994) in the context of the summation technology,

may also hold for the weakest-link technology. However, a detailed comparison between

Proposition 6 about stability and Proposition 7 about global payo§s reveals that the message

is not so simple. It is true for the marginal changes imposed in condition (i) in Proposition 6:

the gains from cooperation decrease but the stability value σS(S) increases. It is not true for

the changes (ii) and (iii) which are payo§ neutral but increase the stability value σS(S). Also
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the skewness of di§erent θi-distributions is only of limited use in characterizing welfare gains,

except when considering the extreme: jumping from a very negatively skewed distribution

to a very positively skewed distribution of θi-values through a sequence of marginal changes

decreases the gains from cooperation but increases stability, confirming the "paradox of

cooperation".

7 Equilibrium Selection

We applied the criterion of Pareto-dominance to select the equilibrium provision level (As-

sumption 2). As pointed out by Hirschleifer (1983), and reiterated by Vicary (1990), this

equilibrium would also emerge if players choose their provision levels sequentially (and dis-

close their bids). In our context, this would be the case if, say, the coalition would act as

a Stackelberg leader and the non-signatories as Stackelberg followers as in Barrett (1994).

This also points to the fact that in our setting, there is no di§erence between the Stackelberg

and Nash-Cournot assumption, which would be di§erent for the summation technology.25

In contrast, experimental evidence suggests that e¢cient outcomes may be di¢cult to

achieve when groups are large. Harrison and Hirshleifer (1989) found that in small groups

coordination on the e¢cient equilibrium may occur, but Van Huyck et al. (1990) showed

that this result does not hold if the group size is increased. This negative impact of group

size on coordination was confirmed by other experimental studies for di§erent variations

of the weakest-link game (Cachon and Camerer, 1996; Brandts and Cooper, 2006; Weber,

2006 and Kogan et al., 2011). Though di§erences across di§erent institutional settings in

experiments are interesting, in our context the most relevant finding is the observation that

the larger the number of players, the smaller equilibrium provision levels will be compared

to the Pareto-optimal Nash equilibrium provision level.

There have been some attempts to model these experimental observations. Unfortunately,

all those papers of which we are aware of assume symmetric players, at least symmetric

benefit functions and hence are not directly applicable to our general setting. Nevertheless,

we briefly discuss them to motivate our analysis below. Cornes and Hartley (2007a) use

a symmetric CES-composition function to model various forms of weaker-link technologies.

They show that at the limit, when the weaker-link approximates the weakest-link, a unique

Nash equilibrium will be selected, though it is not the Pareto-optimal Nash equilibrium; the

Nash equilibrium provision level decreases with the number of players for their assumption.

25For the summation technology, the Stackelberg assumption leads to larger coalitions than the Nash-
Cournot assumption (see Finus 2003 for an overview). Only if B

00

i = 0 will there be no di§erence. The
reason is that Stackelberg leadership provides the coalition members with a strategic advantage compared
to non-members.
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Other approaches originate from the concept of risk-dominance where players assume that

other players may make a (small) mistake when choosing their provision level. Monderer

and Shapley (1996) use the concept of the potential function which yields the risk-dominant

equilibrium for symmetric players, which is unique and decreases in the number of players. A

similar result is obtained by Anderson et al. (2001) using the concept of logistic equilibrium

and a stochastic potential function, again assuming symmetric players and a linear payo§

function.

Extending those theoretical papers to the general case of asymmetric players and general

payo§ functions as used in our paper would be a paper in its own right. Therefore, we

only take the main conclusions from these papers for the motivation to consider two simple

alternative assumptions: a) eqAS = α(n)qAS and b) eeq
A

S = α(n− s+ 1)qAS for all S ⊆ N where

n is the total number of players and s the number of players in coalition S. Hence, the

equilibrium provision level if coalition S forms is α times the Q∗(S) known from Proposition

1. We assume that α(n) and α(n − s + 1) decrease in n and the latter increases in s. For
α(n − s + 1) we may think for simplicity that if s = n , then α(1) = 1 and if no coalition
forms, s = 1, then α(n). The di§erence between both assumptions is how we count players

where the second assumption treats the coalition as one player. Hence, anything else being

equal, coalition formation by itself leads to improved coordination for the second alternative

assumption.

The question we pose now is whether our results would still hold or, if not, what would

change. We note that both alternative assumptions about α imply de facto a kind of modest

provision level as considered in the context of the summation technology by Barrett (2002)

and Finus and Maus (2008) which could lead to larger coalitions. For a given coalition S,

autarky and equilibrium provision levels depart from optimality, but this could be compen-

sated by larger coalitions being stable. Conceptually, this is more interesting in the absence

of transfers because then modesty serves as a compensation device. With transfer, transfers

serve as a compensation device and hence it seems obvious to maximize the gains from coop-

eration by choosing Pareto-optimal equilibrium provision levels as we have done in previous

sections. Hence for brevity, we restrict our analysis to the most important items captured in

sections 4 and 5.

Proposition 8 Alternative Equilibrium Selection Consider two alternative assump-

tions: a) eqAS = α(n)qAS and b) eeq
A

S = α(n− s+ 1)qAS for all S ⊆ N and hence the equilibrium

provision level is α(·)Q∗(S).
(i) For both assumptions, the coalition formation game is e§ective and the properties posi-

tive externality, superadditivity, cohesiveness and full cohesiveness hold (confirming Lemma

3 and Proposition 2).
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(ii) Ex-ante symmetric players:

a) For assumption a) all coalitions are stable, deliver the same provision level and payo§ but

fall short of the social optimum. The larger the di§erence between 1 − α(n), the larger the
di§erence between the equilibrium provision level (global payo§) of stable coalitions and the

socially optimal provision level (global payo§) (slightly modifying Proposition 3).

b) For assumption b), the grand coalition is the unique stable coalition. The larger the

di§erence between 1−α(n), the larger is the gain in the grand coalition compared to the non-
cooperative equilibrium in terms of global payo§s and provision level (modifying Proposition

3).

(iii) Ex-ante asymmetric players and no transfers:

For both assumptions a strictly e§ective coalition with respect to the all singleton coalition

structure may be stable (modifying Proposition 4). For assumption a) the grand coalition

is stable provided that, for all i 2 N for which qAi < qAN , Vi(α(n)q
A
i ) ≤ Vi(α(n)q

A
N) holds

(Vi(α(2)qAi ) ≤ Vi(qAN) under assumption b)). That is, the smaller α(n) under assumption a)
(α(2) under assumption b)), the more likely it is that the grand coalition will be stable. For

assumption a), a su¢cient condition for the grand coalition being stable is α(n)qA1 ≤ qAN .
(iv) Ex-ante asymmetric players and transfers:

For both assumptions an e§ective coalition with respect to the all singleton coalition structure

exists (confirming Proposition 5).

Proof. (i) Slight modifications of the proofs of Lemma 3 and Proposition 2 deliver the

result. (ii) Symmetric provision levels and payo§s for every S ⊆ N are obvious. Global

payo§s are strictly concave in provision levels and eq and eeq increase in α(·). For assumption
a), stability of all S ⊆ N is obvious. For assumption b), Vi2S(S) = Vj /2S(S) for all S ⊆ N ,
and Vi2S(S) increases in α(n−s+1) which increases in s and hence Vi2S(S) > Vj /2S(S\{i}) for
all S ⊆ N and s > 1. Hence, all coalitions are internally stable but only the grand coalition

is externally stable. (iii) Obvious, noting that for all j 2 N for which qAj ≥ qAN holds, the

incentive to leave is not positive. (iv) Slight modifications of the proof in Proposition 5

delivers the result.

Hence, the alternative assumptions do not change the general incentive structure of the

game, all properties established in Lemma 3 and Proposition 2 continue to hold. For assump-

tion a) it is confirmed that ex-ante symmetric players do not render the analysis of coalition

formation interesting for the weakest-link technology. For assumption b) this is di§erent but

almost by assumption because coalition formation helps to coordinate on provision levels.

The larger coalition S, the larger will be α(n−s+1) and the equilibrium provision level, and
hence the gain from cooperation compared to the non-cooperative provision level. Result

(iii) relates somehow to the modesty e§ect. For assumption a) if α(n) is su¢ciently small
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and hence the provision level in a coalition is low, the grand coalition will be stable. This

highlights a paradox because the smaller α(n), the smaller will be the provision level and

global payo§s in the grand coalition compared to the social optimum. For assumption b) the

grand coalition can be stable if the provision level in the grand coalition drops su¢ciently

when one player leaves, i.e. to a modest provision level. This requires that α(n − s + 1)
drops su¢ciently from s = n to s = n− 1 (i.e. from α(1) = 1 to α(2)). For assumption b),

the paradox disappears if we assume α(1) = 1. The grand coalition corresponds to the social

optimum, and the global gain from full cooperation compared to no cooperation increases

with the distance between α(1) = 1 in the grand coalition and α(n) in the all singleton coali-

tion structure. Finally, result (iv) confirms Proposition 4 about the existence of a non-trivial

stable coalition in the presence of transfers.

8 Summary and Conclusion

In this paper, we have analyzed the canonical coalition formation model of international envi-

ronmental agreements (IEAs) under a weakest-link aggregation technology. This technology

underlies a large number of important regional or global public goods, such as coordina-

tion of migration policies within the EU, compliance with minimum standards in marine

law, protecting species whose habitat cover several countries, compliance with targets for

fiscal convergence in a monetary union, fighting a fire which threatens several communities,

air-tra¢c control or curbing the spread of an epidemic.

The analysis of IEAs under the summation technology has typically been conducted

assuming identical players and highly specific functional forms. Moreover, very few papers

analyzed the role of asymmetric players and those are mainly based on simulations. Changing

the focus of the analysis to the weakest-link technology has proven fruitful, as we were

able to establish a large set of analytical results for general payo§ functions. For instance,

superadditivity and full cohesiveness are important features of a game, which could generally

be established for the weakest-link technology. In contrast, we are unaware of an equivalent

proof for the summation technology.

The analysis of the common assumption of symmetric players turned out to produce

rather trivial results for the weakest-link technology: policy coordination proved unnecessary

as all coalitions are stable and lead to the same Pareto optimal outcome. Hence, the bulk

of the paper was devoted to the analysis of the role of asymmetric players. We showed

that without transfers, though all coalitions are Pareto-optimal, no coalition is stable which

departs from non-cooperative provision levels. However, if an optimal transfer is used to

balance asymmetries, a non-trivial coalition exists, associated with a provision level strictly
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above the non-cooperative level. We analyzed the kind and degree of asymmetry that is

conducive to cooperation: a set of (weak) players, who prefer a similar provision below

the average and one (strong) player with a preference for a provision level well above the

average. This ensures that there is no weakest-link outlier at the bottom and one player

with a very high benefit-cost ratio well above all other signatories, who compensates all

other signatories for their contributions to an e¢cient cooperative agreement. For such an

extremely positively skewed distribution of interests regarding optimal provision levels, we

could show that even the grand coalition is stable. Unfortunately, such a distribution also

implied that the "paradox of cooperation" continues to hold for this technology: asymmetries

which are conducive to stability of coalitions yield low welfare gains from cooperation, and

vice versa.

As monetary transfers play a crucial role in enabling successful cooperation in the light

of asymmetric players, it seems suggestive to analyze the role of in-kind transfers in future

research. However, as argued above, general analytical results will be much more di¢cult to

obtain if at all. It is also clear that we focused on the most widespread coalition model and

stability concept used in the literature on IEAs, and hence other concepts could be considered

(Bloch 1997, Finus and Rundshagen 2009 and Yi 1997). Internal and external stability

implies that after a player leaves the coalition, the remaining coalition members remain in the

coalition. In the context of a positive externality game, this is weakest possible punishment

after a deviation and hence implies the most pessimistic assumption about stability. This

appears to be a good benchmark, also because we could show that even for this assumption

the grand coalition can be stable with transfers. Without transfers, other stability concepts

would come to similar negative conclusion as individual rationality is a necessary condition

for almost all sensible equilibrium concepts and without transfers we could show that this

condition is violated. Also the assumption of open membership is a pessimistic assumption

regarding stability in a positive externality game as shown in Finus and Rundshagen (2009).

In other words, those coalitions which we have identified as being stable would also be stable

under exclusive membership. And, again, the grand coalition is anyway immune to external

accession.
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A Summation Technology: Main Results

The first order conditions of non-signatories assuming payo§ function (1), withQ =
P

j2N qj,

gives B0i − C 0i = 0. Total di§erentiation gives B00i dQ− C 00i dqi = 0 or
dqi
dQ
=

B00i
C00i
< 0 and hence

the replacement functions of non-signatories are downward sloping. For signatories, we have
dqi
dQ
=

P
i2S B

00
i

C00i
< 0 and hence taken together the aggregate replacement function is downward

sloping, implying a unique second stage equilibrium for every S ⊆ N . Alternatively for reac-
tion functions, we derive for non-signatories B00i dqi+B

00
i dq−i−C 00i dqi = 0 or

dqi
dq−i

=
B00i

B00i −C
00
i
< 0

with B00i
B00i −C

00
i
> −1. For signatories, we have dqi

dq−i
=

P
i2S B

00
iP

i2S B
00
i −C

00
i
< 0 with

P
i2S B

00
iP

i2S B
00
i −C

00
i
> −1.

If and only if B00i = 0, then replacement and reaction functions have a slope of zero and are

orthogonal but the second stage equilibrium is still unique.

Consider a coalition S with Q∗(S) and a coalition S\{i} with Q∗(S\{i}). We want to
prove Q∗(S) > Q∗(S\{i}). Suppose the opposite, namely, Q∗(S) ≤ Q∗(S\{i}) was true.
Then,

8 k /2 S : C 0k(qk(S\{i})) = B
0
k(Q

∗(S\{i})) ≤ B0k(Q
∗(S)) = C 0k(qk(S))

8 i 2 S : C 0i(qk(S\{i})) = B
0
i(Q

∗(S\{i})) <
X

i2S

B0i(Q
∗(S\{i})) <

X

i2S

B0i(Q
∗(S)) = C 0k(qk(S))

implying qk(S\{i}) ≤ qk(S) and qi(S\{i}) < qi(S) which contradicts the initial assump-
tion. Hence, the game is strictly e§ective. (Because Q∗(S) > Q∗(S\{i}) for all S ⊆ N ,

even for symmetric players the equilibrium provision vectors are di§erent for all possible

coalitions.) Because dqk
dQ

≤ 0, the move from S\{i} to S implies equal or lower costs but
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strictly higher benefits for all non-signatories and hence the positive externality property

holds strictly.

A su¢cient condition for superadditivity to hold is B00i = 0. Moving from S\{i} to
S, qk(S\{i}) = qk(S) 8 k /2 S and qi(S\{i}) < qi(S) 8 i 2 S where qi(S) follows

max
P

i2S Vi(S). Hence,
P

i2S Vi(S) >
P

j2S\{i} Vj(S\{i}) + Vi(S\{i}) must follow. For an
example where superadditivity fails, consider the following payo§ function: Vi = b

(
aQ− 1

2
Q2
)
−

c
2
q2i with a, b, and c positive parameters which are the same for all players. Let n be the

total number of players and s the number of signatories. Then Q∗(s) = ba(s2−s+n)
bs2+bn−bs+c , qi/2S =

ba
bs2+bn−bs+c and qi2S = sqi/2S. Computing ∆ := Vi2S(s = 2) − Vi/2S(s = 1) (in which case

superadditivity and internal stability are the same conditions) gives ∆ = − b2a2cΨ
2(bn+2b+c)2(bn+c)2

with Ψ = γ2(3n2−4n−4)+γ(2n−8)−1 and γ = b/c. Now assume n = 4, then Ψ = 28γ2−1
and hence Ψ > 0 and ∆ < 0 if γ is su¢ciently large. It can be shown that if ∆ < 0, also

no larger coalition is internally stable. For an example which shows that for no transfers,

not all coalitions are Pareto-optimal and a stable non-trivial coalition may or may not exist,

consider Vi = biQ− ci
2
q2i with bi, and c positive parameters. Note that for this payo§ function

superadditivity holds. Signatories’ equilibrium provision level is given by qi2S =
P
i2S bi
c

and

non-signatories provision level by qi/2S = bi
c
. Assume for simplicity n = 3 and let c = 1

8 i 2 N . Example 1 assumes b1 = 1, b2 = 2 and b3 = 3 and Example 2 assumes b1 = 1,

b2 = 1.1 and b3 = 1.2 with the results displayed in Table 1.

[Table 1 about here]
In Example 1, no non-trivial coalition is stable but all coalitions are Pareto-optimal. In

Example 2, all two-player coalitions are stable, except a coalition of player 1 and 2, but only

the grand coalition and the coalition of player 2 and 3 are Pareto-optimal.

B Weakest-Link Technology: Proofs

B.1 Lemma 4

The first order conditions in an interior equilibrium are ĉ@C
@q
= b̂@B

@q
where b̂ =

P
i2S bi and

ĉ =
P

i2S ci. Thus, we can define functions f and h as follows:

f(q) =
C 0(q)

B0(q)
=
b̂

ĉ
=
b̄

c̄
= θS ,

qAS = f−1 (θS) = h (θS) .
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To show that h is strictly concave and strictly increasing, we show that f is strictly increasing

and strictly convex:

@f(q)

@q
=

B0(q)C 00(q)− C 0(q)B00(q)
(B0(q))2

> 0 ,

@2f (q)

@q@q
=

C 000(q) (B0(q))2 + 2C 0(q) (B00(q))2 − 2C 00(q)B0(q)B00(q)− C 0(q)B0(q)B000(q)
(B0(q))3

> 0

which is true due to the assumptions about the first and second derivatives summarized

in Assumption 1 and the assumptions about the third derivatives mentioned in Section 6.2,

namely, C 000 ≥ 0 and B000 ≤ 0 (or if B000 > 0, B000(q) < −2B00(q)C 00(q)/C 0(q)).

B.2 Proposition 6

Before proving the proposition itself, we proof a lemma that is useful for the subsequent

analysis.

Lemma 5 The function ki (θ) = vi(h(θ)) is strictly concave and increasing in θ, θ 2 [0, θAi ].

Proof. k0i (θ) = v0i(h(θ))h
0(θ) is increasing if v0i(h(θ)) =

@v(q)
@q

> 0, as we have shown in

Lemma 4 that h(θ) is strictly concave and increasing and we thus have h0(θ) > 0. Due

to Assumption 1, v is a strictly concave function with respect to qi with a maximum at

qAi = h(θ
A
i ), and it is therefore increasing for qi 2 [0, qAi ]. As h(θi) is increasing everywhere

we also know that vi(h(θi)) is increasing for θi 2 [0, θAi ] because for any θi 2 [0, θ
A
i ] we know

that qi = h(θi) ≤ qAi . Thus, we have v0i(h(θ)) =
@v(q)
@q

> 0.

For k to be strictly concave, we need:

k00 (θ) = v00(h(θ)) (h0(θ))
2
+ v0(h(θ))h00(θ) < 0. (B.1)

We have just shown that v0i(h(θ)) =
@v(q)
@q

> 0 for θi 2 [0, θAi ], and by the strict concavity of
v with respect to q = h(θ), due to Assumption 1, and that of h with respect to θ, shown

in Lemma 4, we know v00(h(θ)) < 0 and h00(θ) < 0. Hence, k00 (θ) < 0 and k (θ) is strictly

concave.

Before proceeding, let us first write equation (4) in the text in a more disaggregated form:

σS(S,Θ) =
X

i2S

vi(θy)−
X

i2S1

vi (θi)−
X

i2S2

vi(θS\{i})−
X

i2S3

vi (θy) ≥ 0. (B.2)

After the marginal changes in the distribution mentioned in the Proposition, bk becomes

bk − ϵ and bl becomes bl + ϵ. These changes do neither a§ect θm nor θS =
P

i2S bi/
P

i2S ci,

because ci = c 8 i 2 S.
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We now proof the three conditions of the θ-values listed in Proposition 6.

i) θl < θk ≤ θy. Consider first the case where both players are in S1, i.e. θl < θk < θy.
We denote the new valuation function by ṽ and, slightly abusing notation, θ{k−ϵ} and θ{l+ϵ}
the two values that have changed in Θ̃. The third and fourth sum in condition (B.2) remain

unchanged. In the first sum in (B.2) the value of θy is the same, but the valuation function

has changed for players k and l. However, as vk (θy) + vl (θy) = ṽk (θy) + ṽl (θy) still holds,

the aggregate value of the sum does not change. Thus, only the second sum in condition

(B.2) changes and in order for σS(S,Θ) < σS(S, Θ̃) to hold, we need:

vk (θk) + vl (θl) > ṽk
!
θ{k−ϵ}

"
+ ṽl

!
θ{l+ϵ}

"

or

[bkB(h(θk))− cC(h(θk))]−
#
bkB(h(θ{k−ϵ}))− cC(h(θ{k−ϵ}))

$
(B.3)

+ϵ
#
B(h(θ{k−ϵ}))−B(h(θ{l+ϵ})

$

>
#
blB(h(θ{l+ϵ}))− cC(h(θ{l+ϵ})

$
− [blB(h(θl))− cC(h(θl))] .

Recalling the definition of derivatives, dividing both sides by ϵ and taking the limit ϵ ! 0,

inequality (B.3) becomes:

#
B(h(θ{k−ϵ}))−B(h(θ{l+ϵ})

$
+ v0k (θ)|θ{k−ϵ} ≥ v0l (θ)|θl . (B.4)

For ϵ ! 0, θk > θl implies θk−ϵ ≥ θl+ϵ and therefore the first term on the LHS of inequal-

ity (B.4) is non-negative. Thus, inequality (B.4) always holds as we have v0k (θ)|θ{k−ϵ} &
v0k (θ)|θk = 0 and v

0
l (θ)|θl = 0, given that θ{k−ϵ} < θk, θk and θl maximize vk and vl, respec-

tively, and vi(θ) is an increasing and strictly concave function for θ 2 [0, θAi ] by Lemma 4.
If player k is initially in S3, i.e. if θk = θy, the last sum in (B.2) does change, but the relevant

marginal changes are still summarized in condition (B.3) and the proof continues to hold.

(ii) θy < θk ≤ θl. Assume first k, l 2 S2. Following a similar argument as before, it is
clear that only the third sum in condition (B.2) has changed, and for σS(S,Θ) < σS(S, Θ̃)

to hold, we need:

vk
!
θS\k

"
+ vl

!
θS\l

"
> ṽk

!
θS\{k−ϵ}

"
+ ṽl

!
θS\{l+ϵ}

"
(B.5)
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or

!
blB(h(θS\l))− cC(h(θS\l))

"
−
!
blB(h(θS\{l+ϵ}))− cC(h(θS\{l+ϵ})

"
(B.6)

+ϵ
!
B(h(θS\{k−ϵ}))−B(h(θS\{l+ϵ})

"

>
!
bkB(h(θS\{k−ϵ}))− cC(h(θS\{k−ϵ}))

"
−
!
bkB(h(θS\k))− cC(h(θS\k))

"
.

Noting that θS\{l+ϵ} < θS\l and θS\k < θS\{k−ϵ}, we have that θS\{l+ϵ} < θS\{k−ϵ} and the

third term on the LHS of inequality (B.6) is positive. Thus, a su¢cient condition is:

!
blB(h(θS\l))− cC(h(θS\l))

"
−
!
blB(h(θS\{l+ϵ}))− cC(h(θS\{l+ϵ})

"

>
!
bkB(h(θS\{k−ϵ}))− cC(h(θS\{k−ϵ}))

"
−
!
bkB(h(θS\k))− cC(h(θS\k))

"

and dividing both sides by ϵ and taking the limit ϵ! 0 this becomes:

v0l (θ)|θS\{l+ϵ} > v0k (θ)|θS\k . (B.7)

Because we have

v0j (θ) = v
0
j(h(θ))h

0(θ) = [bjB
0(h(θ))− cjC 0(h(θ))]h0(θ) > 0

inequality (B.7) can be written as:

!
blB

0(h(θS\{l+ϵ}))− cC 0(h(θS\{l+ϵ}))
"
h0(θS\{l+ϵ}) >

!
bkB

0(h(θS\k))− cC 0(h(θS\k))
"
h0(θS\k).

Because θl > θk, we also know that

!
blB

0(h(θS\{l+ϵ}))− cC 0(h(θS\{l+ϵ}))
"
h0(θS\{l+ϵ}) >

!
bkB

0(h(θS\{l+ϵ}))− cC 0(h(θS\{l+ϵ}))
"
h0(θS\{l+ϵ}).

Hence, a su¢cient condition for inequality (B.7) to hold is

!
bkB

0(h(θS\{l+ϵ}))− cC 0(h(θS\{l+ϵ}))
"
h0(θS\{l+ϵ}) >

!
bkB

0(h(θS\k))− cC 0(h(θS\k))
"
h0(θS\k)

or

v0k (θ)|θS\{l+ϵ} > v0k (θ)|θS\k .

This holds for θS\{l+ϵ} < θS\k < θ
A
k , as vk(θ) is an increasing and strictly concave function

for θ 2 [0, θAi ] by Lemma 4.
Assume now k, l 2 S3. Then, equation (B.5) simplifies to

vk (θy) + vl (θy) = ṽk (θy) + ṽl (θy)
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and σS(S,Θ) = σS(S, Θ̃).

If k 2 S3 and l 2 S2 (the opposite is not possible, see figure 2) then equation (B.5)

simplifies to

vk (θy) + vl
!
θS\l

"
> ṽk (θy) + ṽl

!
θS\{l+ϵ}

"

or

0 <
#
blB(h(θS\l))− cC(h(θS\l))

$
−
#
blB(h(θS\{l+ϵ}))− cC(h(θS\{l+ϵ}))

$

+ϵ
#
B(h(θy))−B(h(θS\{l+ϵ})

$

which holds because v0l (θ)|θS\{l+ϵ} > 0 (for the first two terms) and θS\{l+ϵ} < θy (for the last
term).

Finally, in the "marginal case" where initially θy < θk ≤ θl but finally θk−ϵ = θy < θl+ϵ,
it is easy to check that the conclusions derived above hold. One just needs to note that in

case k, l 2 S2, θS\{k−ϵ} = θy holds.
(iii) θk ≤ θy < θl and θ{k−ϵ} ≥ θS\{l+ϵ}. Assume first k 2 S1 and l 2 S2. Because nothing

has changed for the remaining players, in order to have σS(S,Θ) < σS(S, Θ̃), we need:

#
blB(h(θS\l))− cC(h(θS\l))

$
−
#
blB(h(θS\{l+ϵ}))− cC(h(θS\{l+ϵ})

$
(B.8)

+ϵ
#
B(h(θ{k−ϵ}))−B(h(θS\{l+ϵ})

$

>
#
bkB(h(θ{k−ϵ}))− cC(h(θ{k−ϵ}))

$
− [bkB(h(θk))− cC(h(θk))] .

If θ{k−ϵ} > θS\{l+ϵ}, the third term on the LHS in inequality (B.8) is positive and a su¢cient

condition for (B.8) to hold is:

#
blB(h(θS\l))− cC(h(θS\l))

$
−
#
blB(h(θS\{l+ϵ}))− cC(h(θS\{l+ϵ})

$

+ [bkB(h(θk))− cC(h(θk))]−
#
bkB(h(θ{k−ϵ}))− cC(h(θ{k−ϵ}))

$
> 0 .

Noting that θS\{l+ϵ} < θS\l, dividing both sides by ϵ and taking the limit ϵ! 0, this becomes:

v0l (θ)|θS\{l+ϵ} + v
0
k (θ)|θ{k−ϵ} > 0 .

This holds for θS\{l+ϵ} < θ
A
l and θ{k−ϵ} < θ

A
k , as vi(θ) is an increasing and strictly concave

function for θ 2 [0, θAi ] by Lemma 5.
Consider now the case k 2 S3 and l 2 S2. This implies that we are considering the

particular case where initially θk = θy < θl and finally θk−ϵ < θy < θl+ϵ. Because

now θ{k−ϵ} ≥ θS\{l+ϵ} always holds (because θ{k−ϵ} is infinitely close to θy) we have that

B(h(θ{k−ϵ})) ≥ B(h(θS\{l+ϵ}). Thus, a su¢cient condition for the equivalent to inequality
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(B.8) to hold is:

[
blB(h(θS\l))− cC(h(θS\l))

]
−
[
blB(h(θS\{l+ϵ}))− cC(h(θS\{l+ϵ})

]
(B.9)

+ [bkB(h(θk))− cC(h(θk))]− [bkB(h(θy))− cC(h(θy))] > 0 .

We know that k was in S3, i.e. θy . θk, but we also know that it only was in S3 at the margin,
as (k − ϵ) 2 S1 and thus θ{k−ϵ} < θy. Hence θy = θk or slightly above, i.e. θy . θk. Thus,

either the second square bracket in inequality (B.9) is zero or it is equal to v0k (θ)|θAy > 0. As
the first square bracket is also positive (see above), the condition always holds.

For the case k 2 S1 and l 2 S3 we have that θS\l > θS\{l+ϵ} ≥ θy > θk > θ{k−ϵ} and hence
the condition θ{k−ϵ} ≥ θS\{l+ϵ} fails. The same holds for the case k, l 2 S3, as in this case
θS\l > θS\{l+ϵ} ≥ θy = θk > θ{k−ϵ}.

B.3 Variance and skewness coe¢cient

We now define the conditions under which a marginal increase of stability (through the

changes in Proposition 6) increases the variance and the skewness of the θi-distribution.

Applying the standard definition of the variance (second moment) and the Fisher-Pearson

coe¢cient of skewness to the distribution of θi-values (respectively bi-values) we obtain the

following definition:

Definition 6 The skewness coe¢cient g(Θ) of the distribution Θ of θi-values within a coali-
tion is:

g(Θ) =
m3(Θ)

(m2(Θ))
3/2
; m2(Θ) =

1

s

X

i2S

(θi − θS)
2 ; m3(Θ) =

1

s

X

i2S

(θi − θS)
3 ,

where θS = 1
s

P
i2S θi is the mean, m2(Θ) the second moment (variance) and m3(Θ) the third

moment of the distribution Θ, respectively, and s is the number of coalition members.

Relating the distributions Θ and Θ̃ defined in Proposition 6 to the variance and the

skewness coe¢cient, we obtain the following proposition:26

Proposition 9 Consider a coalition S determining the equilibrium provision level and two

distributions Θ and Θ̃ as defined in Proposition 6, then m2(Θ̃) > m2(Θ) for cases (ii) and

26If the assumption ci = c 8 i is substituted by the assumption bi = b 8 i Proposition 9 continues to hold.
For the general case where players di§er in their bi’s and their ci’s, the Proposition would continue to hold,
but the coe¢cient g(Θ) would not any more be the standard skewness coe¢cient as θS =

P
i2S biP
i2S ci

is not

anymore the average over all θi’s (as it is when either bi = b 8 i or ci = c 8 i).
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(iii) in Proposition 6 and g(Θ̃) > g(Θ) in all three cases if and only if

m2(Θ) >
m3(Θ)

θk + θl − 2θS
. (B.10)

Proof. All the marginal changes described in Proposition 6 imply that bk becomes bk − ϵ
and bl becomes bl + ϵ. Hence, m2(Θ̃) > m2(Θ) implies

1

n

X

i2S\k,l

(
bi
c
−
bS
c

)2
+
1

n

(
bk
c
−
bS
c

)2
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1
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)2

<
1

n

X

i2S\k,l

(
bi
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+
1
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(
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c

−
bS
c

)2
+
1

n

(
bl + ϵ

c
−
bS
c

)2
,

which simplifies to bk < ϵ+ bl. This holds for cases (ii) and (iii) in Proposition 6 but not for

case (i). In addition, g(Θ̃) > g(Θ) implies

1
n

(P
i2S\k,l

(
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c
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c

)3
+
(
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c
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c

)3
+
(
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)3)

(
1
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P
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c
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This yields inequality (B.10) after tedious algebraic manipulations which are available from

the authors upon request.

Note that for case (i) in Proposition 6 we have that θk+θl−2θS < 0 and hence condition
B.10 holds for any positively skewed distribution, where m3(Θ) > 0 (as m2(Θ) is always

positive), and for distributions that are not too negatively skewed (where the absolute value

of m3(Θ) is smaller than m2(Θ) (θk + θl − 2θS)). For cases (ii) to (iii) in Proposition 6 we
know that27 θk + θl − 2θS > 0, and thus condition B.10 holds for negatively skewed or

not too positively skewed distributions. That is, the intuition that all marginal changes

proposed in Proposition 6 increase skewness is correct for moderately skewed distributions

(whether positively or negatively skewed). For "strongly" skewed distributions (where the

absolute value of m3(Θ) is larger than m2(Θ) (θk + θl − 2θS)), there are exceptions, but one
can always increase stability and skewness at the same time by selecting the appropriate

changes in Proposition 6 (i.e. case (i) for "strongly" positively skewed distributions and

cases (ii) to (iii) for "strongly" negatively skewed distributions).

27For case (iii) in Proposition 6 note that θk + θl− 2θS > 0 if θl is further away from the average than θk,
which holds if θ{k−ϵ} > θS\{l+ϵ} as assumed in the proposition.
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Proposition 9 has assumed that the coalition determines the equilibrium provision level.

The reason is that if an outsiderm determines the equilibrium, skewness needs to be replaced

by an equivalent concept (coe¢cient) where the "moments" are defined around θm and

not around the average θS. In other words, to extend Proposition 9 to any coalition not

determining the equilibrium one needs to substitute g(Θ) by a similar coe¢cient, ĝ(Θ),

defined using θm instead of the average of the distribution.
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Figure 1: Replacement Functions and Equilibria for the Weakest-link Technology 
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Figure 2: Weak, Strong, and Neutral Players 
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Figure 3: Illustration of Proposition 6 
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Table 1: Coalition Structures and Payoffs 

 Example 1 Example 2 
Coalition 
Structure 

Player 1 Player 2 Player 3 Player 1 Player 2 Player 3 

{{1},{2},{3}} 5.5 10 13.5 2.8 3.03 3.24 
{{1,2},{3}} 4.5 13.5 22.5 3.2 3.74 5.76 
{{1,3},{2}} 2 18 22 3.08 5.45 4.18 
{{1},{2,3}} 10.5 9.5 20.5 5.1 3.52 4.08 
{{1,2,3}} 0 18 36 4.46 5.45 6.44 
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